BICS Security 2

Sergiu Bursuc Jean-Sébastien Coron Marcus Völp Peter Y. A. Ryan

University of Luxembourg

BICS Security 2

- Description
 - This course allows students to obtain in-depth knowledge from a selection of areas in the field of information security.
- The course is divided into 4 parts:
 - Public-key cryptography (Jean-Sébastien Coron): 3 lectures
 - System security and trusted computation (Marcus Völp): 2 lectures
 - General cryptographic protocols (Peter Y. A. Ryan): 6 lectures
 - Blockchain protocols (Sergiu Bursuc): 3 lectures
- Organization:
 - Lectures on Tuesdays, 10:30 12:00.
 - TDs on Wednesdays, 11:15 12:45.
- Grading
 - Homework (100 %): 4 homeworks

Public-key cryptography

Part 1: introduction to public-key cryptography

Jean-Sébastien Coron

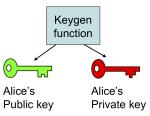
University of Luxembourg

Outline

- Lecture 1: introduction to public-key cryptography (this lecture)
 - RSA encryption, signatures and DH key exchange
- Lecture 2: applications of public-key cryptography
 - · Security models.
 - How to encrypt and sign securely with RSA. OAEP and PSS.
 - Public-key infrastructure. Certificates, SSL protocol.
- Lecture 3: cloud computing
 - How to delegate computation thanks to fully homorphic encryption
 - A fully homomorphic encryption scheme

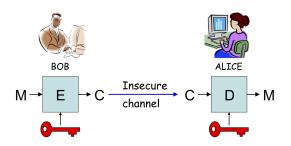
Public-key cryptography

- Invented by Diffie and Hellman in 1976. Revolutionized the field.
- Each user now has two keys
 - A public key
 - A private key
 - Should be hard to compute the private key from the public key.
- Enables:
 - Asymmetric encryption
 - Digital signatures
 - Key exchange, identification, and many other protocols.



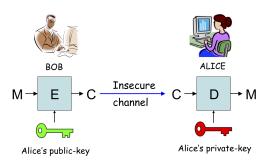
Key distribution issue

- Symmetric cryptography
 - Problem: how to initially distribute the key to establish a secure channel?



Public-key encryption

- Public-key encryption (or asymmetric encryption)
 - Solves the key distribution issue



Analogy: the mailbox

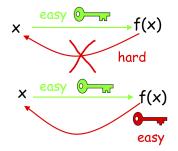
- Bob wants to send a letter to Alice
 - Bob obtains Alice's adress
 - Bob puts his letter in Alice's mailbox
 - Alice opens her mailbox and read Bob's letter.
- Properties of the mailbox
 - Anybody can put a letter in the mailbox
 - Only Alice can open her mailbox

The RSA algorithm

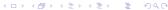
- The RSA algorithm is the most widely-used public-key encryption algorithm
 - Invented in 1977 by Rivest, Shamir and Adleman.
 - Implements a trapdoor one-way permutation
 - Used for encryption and signature.
 - Widely used in electronic commerce protocols (SSL), secure email, and many other applications.

Trapdoor one-way permutation

- Trapdoor one-way permutation
 - Computing f(x) from x is easy
 - Computing x from f(x) is hard without the trapdoor



- Public-key encryption
 - Anybody can compute the encryption c = f(m) of the message m.
 - One can recover *m* from the ciphertext *c* only with the trapdoor.



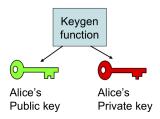
RSA

- Key generation:
 - Generate two large distinct primes p and q of same bit-size k/2, where k is a parameter.
 - Compute $n = p \cdot q$ and $\phi = (p-1)(q-1)$.
 - Select a random integer e such that $gcd(e, \phi) = 1$
 - Compute the unique integer d such that

$$e \cdot d \equiv 1 \pmod{\phi}$$

using the extended Euclidean algorithm.

- The public key is (n, e).
- The private key is d.



RSA encryption

- Encryption with public-key (n, e)
 - Given a message $m \in [0, n-1]$ and the recipent's public-key (n, e), compute the ciphertext:

$$c = m^e \mod n$$

- Decryption with private-key d
 - Given a ciphertext c, to recover m, compute:

$$m = c^d \mod n$$

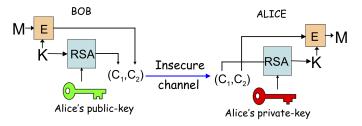
- Message encoding
 - The message m is viewed as an integer between 0 and n-1
 - One can always interpret a bit-string of length less than [log₂ n] as such a number.

Implementation of RSA

- Required: computing with large integers
 - more than 1024 bits.
- In software
 - big integer library: GMP, NTL
- In hardware
 - Cryptoprocessor for smart-card
 - Hardware accelerator for PC.

Speed of RSA

- RSA much slower than AES and other secret key algorithms.
- To encrypt long messages
 - encrypt a symmetric key K with RSA
 - and encrypt the long message with K

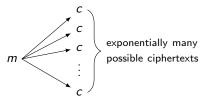


Security of RSA

- The security of RSA is based on the hardness of factoring.
 - Given $n = p \cdot q$, it should be difficult to recover p and q.
 - No efficient algorithm is known to do that. Best algorithms have sub-exponential complexity.
 - Factoring record (2020): a 829-bit RSA modulus n.
 - In practice, one uses at least 1024-bit RSA moduli.
- However, there are many other lines of attacks.
 - Attacks against textbook RSA encryption
 - Low private / public exponent attacks
 - Implementation attacks: timing attacks, power attacks and fault attacks

Elementary attacks

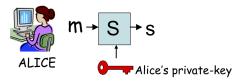
- Textbook RSA encryption: dictionary attack
 - If only two possible messages m_0 and m_1 , then only $c_0 = (m_0)^e \mod N$ and $c_1 = (m_1)^e \mod N$.
 - ⇒ encryption must be probabilistic.



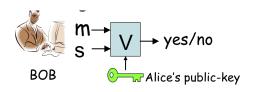
- Example: PKCS#1 v1.5 (1993)
 - $\mu(m) = 0002 ||r|| 00 ||m|$
 - $c = \mu(m)^e \mod N$
 - Still insufficient (Bleichenbacher's attack, 1998)

Digital signatures

- A digital signature σ is a bit string that depends on the message m and the user's public-key pk
 - Only Alice can sign a message m using her private-key sk



• Anybody can verify Alice's signature of the message m given her public-key pk



Digital signature

- A digital signature provides:
 - Authenticity: only Alice can produce a signature of a message valid under her public-key.
 - Integrity: the signed message cannot be modified.
 - Non-repudiation: Alice cannot later claim that she did not sign the message

The RSA signature scheme

- Key generation :
 - Public modulus: $N = p \cdot q$ where p and q are large primes.
 - Public exponent : e
 - Private exponent: d, such that $d \cdot e = 1 \mod \phi(N)$
- \bullet To sign a message m, the signer computes :
 - $s = m^d \mod N$
 - Only the signer can sign the message.
- To verify the signature, one checks that:
 - $m = s^e \mod N$
 - Anybody can verify the signature

Hash-and-sign paradigm

- There are many attacks on basic RSA signatures:
 - Existential forgery: $r^e = m \pmod{N}$
 - Chosen-message attack: $(m_1 \cdot m_2)^d = m_1^d \cdot m_2^d \pmod{N}$
- To prevent from these attacks, one usually uses a hash function. The message is first hashed, then padded.

$$m \longrightarrow H(m) \longrightarrow 1001 \dots 0101 \| H(m)$$

$$\downarrow$$

$$\sigma = (1001 \dots 0101 \| H(m))^d \mod N$$

Example: PKCS#1 v1.5 (1993)

$$\mu(m) = 0001 \text{ FF}...\text{FF00}||c_{\mathsf{SHA}}||\mathsf{SHA}(m)$$

• The signature is then $\sigma = \mu(m)^d \mod N$

Other signature schemes

- Digital Signature Algorithm (DSA) (1991)
 - Digital Signature Standard (DSS) proposed by NIST, specified in FIPS 186.
 - Variant of Schnorr and ElGamal signature schemes
 - Security based on the hardness of discrete logarithm problem.
 - Public-key: $y = g^x \mod p$
 - Signature: (r, s), where $r = (g^k \mod p) \mod q$ and $s = k^{-1}(H(m) + x \cdot r) \mod p$, where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- ECDSA: a variant of DSA for elliptic-curves
 - Shorter public-key than DSA (160 bits instead of 1024 bits)
 - Used in Bitcoin to ensure that funds can only be spent by their rightful owners.

Diffie-Hellman key-exchange protocol

• Public parameters: g and p

Bob
$$B = g^{b}[p] \xrightarrow{B}$$

$$A = g^a [p]$$

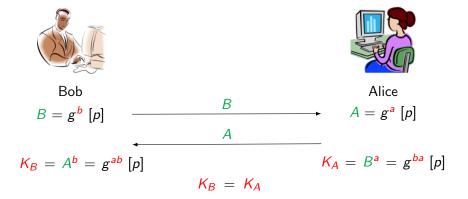
$$K_B = A^b = (g^a)^b = g^{ab} [p]$$
 $K_A = B^a = (g^b)^a = g^{ba} [p]$

$$K_B = K_A$$

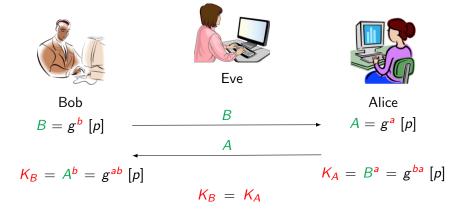
Security of Diffie-Hellman

- Based on the hardness of the discrete-log problem:
 - Given $A = g^a \pmod{p}$, find a
 - No efficient algorithm for large prime p.
- No authentication
 - Vulnerable to the man in the middle attack

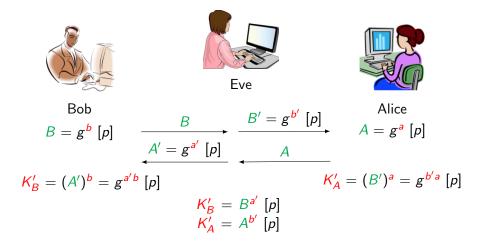
Diffie-Hellman: man in the middle attack



Diffie-Hellman: man in the middle attack



Diffie-Hellman: man in the middle attack



Security of Diffie-Hellman

- Based on the hardness of the discrete-log problem:
 - Given $A = g^a \pmod{p}$, find a
 - No efficient algorithm for large prime p.
- No authentication
 - Vulnerable to the man in the middle attack
- Authenticated key exchange
 - Using a PKI. Alice and Bob can sign A and B
 - Password-authenticated key-exchange IEEE P1363.2

Lessons from the past

- Cryptography is a permanent race between construction and attacks
 - but somehow this has changed with modern cryptography and security proofs.
- Security should rely on the secrecy of the key and not of the algorithm
 - Open algorithms enables open scrutiny.