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Overview

Quantum threat:
Quantum computers and their potential
to break widely-used cryptosystems:
RSA, ECC.

Post-quantum algorithms:
Overview of algorithms believed to be
secure against quantum adversaries.
Lattice-based, code-based,
multivariate polynomial, and others.

Introduction to lattice-based encryption
LWE encryption
RLWE encryption
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The quantum threat

Quantum computer
Can process a vast number of possible
outcomes simultaneously, thanks to
superposition of quantum states.
Some problems which are hard for
classical computers can be solved
efficiently by quantum computers.

Potential threat to classical cryptographic algorithms
Shor’s algorithm (1994)
Breaks RSA and discrete-log based cryptography,
including ECC, using a quantum computer.
Still far from a concrete threat (number of qbits, error
correction, etc.)
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Hard problems in public-key cryptography

Public-key cryptography is based on hard problems
RSA: hardness of factoring N = pq
ECC: hardness of finding d in P = d.G
We don’t know any classical algorithm
that can efficiently solve these problems.
but these problems are broken by a
quantum computer

Post-quantum hardness
In the quantum era, a problem should
remain hard even when attacked by both
classical and quantum computers.
Fortunately, we know many such problems !
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First ideas in post-quantum cryptography

Code-based Cryptography (McEliece, 1978)
Relies on the hardness of
decoding a general linear
code
McEliece’s encryption scheme.
Large key size

Lattice-based cryptography
Based on the difficulty of certain
problems in lattices (SVP and CVP)
NTRU (1996), a very fast public-key
encryption scheme.
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First ideas in post-quantum cryptography (2)

Multivariate cryptography
Matsumoto-Imai C∗ scheme (1988), HFE [P96]
Security relies on the difficulty of solving systems of
multivariate polynomial equations.
Short signatures

Hash-based cryptography (Lamport, 1979)
Based on the security of cryptographic
hash functions.
Mostly used for digital signatures.

Jean-Sébastien Coron Introduction to post-quantum cryptography



Hard lattice problems in cryptography
Lattice

Regular grid of points in multidimensional space,
defined by a basis of vectors.

Shortest Vector Problem (SVP)
Given a lattice basis, find the shortest non-zero vector.
Believed to be hard even for quantum computers.
LLL algorithm provides an approximation in
polynomial-time.

b1
b2

b′1

b′2

Original basis
Reduced basis
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Hard lattice problems in cryptography

Learning With Errors (LWE) [R05]:
Given ®A ∈ Zℓ×n

q such that ®A · ®s = ®e for small ®e, recover ®s.
Ring-LWE and Module-LWE:

Variant of LWE where the secret and errors come from
a polynomial ring.
Offers efficiency advantages.

Significance:
Lattice problems serve as a
foundation for many post-quantum
cryptographic schemes.
Believed to be hard against both
classical and quantum adversaries.
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LWE-based encryption [R05]

Key generation
Secret-key: ®s ∈ (Zq)n

Encryption of m ∈ {0, 1}
A vector ®c ∈ Fq such that

⟨®c, ®s⟩ = 2e + m (mod q)
for a small error e.

· =

®c
®s

2e + m

Decryption
Compute m = (®c · ®s mod q) mod 2
Decryption works if |e| < q/4
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LWE-based encryption: alternative encoding
The message m can also be encoded in the MSB.
Encryption of m ∈ {0, 1}

A vector ®c ∈ Fq such that
⟨®c, ®s⟩ = e + m · ⌊q/2⌋ (mod q)

· =

®c
®s

e + m · ⌊q/2⌋ (mod q)

Decryption
Compute m = th(⟨®c, ®s⟩ mod q)
where th(x) = 1 if x ∈ (q/4, 3q/4), and 0 otherwise.

0

q/4

q/2

3q/4
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LWE-based public-key encryption
Key generation

Secret-key: ®s ∈ (Zq)n, with s1 = 1.
Public-key: ®A such that ®A · ®s = ®e for small ®e

Every row of ®A is an LWE encryption of 0.
Encryption of m ∈ {0, 1}

®c = ®u · ®A + (m · ⌊q/2⌉, 0, . . . , 0)
for a small ®u

· +
⌊ q

2
⌉
· =m 0 0

®u

®A

®c

Decryption
Compute m = th(⟨®c, ®s⟩ mod q)
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RLWE-based schemes

RLWE-based scheme
We replace Zq by the polynomial ring
Rq = Zq [x]/< xℓ + 1 >, where ℓ is a power of 2.
Addition and multiplication of polynomials are
performed modulo xℓ + 1 and prime q.
We can take m ∈ R2 = Z2 [x]/<xℓ + 1>
instead of {0, 1}: more bandwidth.

Ring Learning with Error (RLWE) assumption [LPR13]
t = a · s + e for small s, e← R
Given t, a, it is difficult to recover s.
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RLWE-based public-key encryption
Key generation

t = a · s + e for random a← Rq and small s, e← R.
Public-key encryption of m ∈ R2

c = (a · r + e1, t · r + e2 + ⌊q/2⌉m), for small e1, e2 and r.
Decryption of c = (u, v)

Compute m = th(v − s · u)
v − s · u = t · r + e2 + ⌊q/2⌉m − s · (a · r + e1)

= (t − a · s) · r + e2 + ⌊q/2⌉m − s · e1

= ⌊q/2⌉m + e · r + e2 − s · e1︸              ︷︷              ︸
small

m ∈ R2 = Z2 [x]/<xℓ + 1>: more bandwidth.
0

q/4

q/2

3q/4
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Conclusion

Quantum threat
Quantum computers can undermine existing
cryptographic infrastructure.
this prompts a shift to post-quantum algorithms

Post-quantum algorithms
Lattice-based, code-based, and multivariate
polynomial have emerged as viable alternatives.
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