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Side-Channel Attack

Consists in obtaining a side-channel information during the
execution of a cryptographic algorithm

Side-channel Attacks

Timing attack
Power attack
Fault attack
Differential Power Analysis

Side-channel countermeasures

Countermeasures for RSA
The masking countermeasure
The Ishai-Sahai-Wagner transform
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Implementation attacks

The implementation of a cryptographic algorithm can reveal
more information

Passive attacks :

Timing attacks (Kocher, 1996): measure the execution time
Power attacks (Kocher et al., 1999): measure the power
consumption

Active attacks :

Fault attacks (Boneh et al., 1997): induce a fault during
computation
Invasive attacks: probing.
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Timing attacks

Described on RSA by Kocher at Crypto 96.

Let d =
∑n

i=0 2idi .
Computing md mod N using square and multiply :

Let z ← m
For i = n − 1 downto 0 do

Let z ← z2 mod N
If di = 1 let z ← z ·m mod N

Attack

Let Ti be the total time needed to compute md
i mod N

Let ti be the time needed to compute m3
i mod N

If dn−1 = 1, the variables ti and Ti are correlated, otherwise
they are independent. This gives dn−1.
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Power attacks

Based on measuring power consumption

Introduced by Kocher et al. at Crypto 99.
Initially applied on DES, but any cryptographic algorithm is
vulnerable.

Attack against exponentiation md mod N :

If power consumption correlated with some bits of m3 mod N,
this means that m3 mod N was effectively computed, and so
dn−1 = 1.
Enables to recover dn−1 and by recursion the full d .
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Fault attacks

Induce a fault during computation

By modifying voltage input

RSA with CRT: to compute s = md mod N, compute :

sp = mdp mod p where dp = d mod p − 1
sq = mdq mod q where dq = d mod q − 1
and recombine sp and sq using CRT to get s = md mod N

Fault attack against RSA with CRT (Boneh et al., 1996)

If sp is incorrect, then se 6= m mod N while se = m mod q
Therefore, gcd(N, se −m) gives the prime factor q.
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Differential Power Analysis (DPA)

The attack was originally described on DES, but any
block-cipher is vulnerable.

The attack is based on a statistical analysis of the power
consumption measured during the execution of a block cipher.

It enables to quickly recover the key, given a few power
acquisitions.
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Differential Power Analysis

Given as input x ∈ {0, 1}n for some small n (say n = 8),
consider the computation:

y = S(x ⊕ k)

where y , k ∈ {0, 1}n and k is a subkey.

Let E be the power consumption when S(x ⊕ k) is computed

We assume that E is correlated to S(x ⊕ k)
For example

E = H(S(x ⊕ k)) + B

where H() is the Hamming weight and B is some noise.
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DPA: statistical analysis

Assume that we can get many power acquisitions:

Ei = H(S(xi ⊕ k)) + Bi

for known inputs xi ’s, but unknown subkey k .

We are going to try all possible hypothesis k ′ ∈ {0, 1}n for the
subkey, and compute all possible S(xi ⊕ k ′) for all inputs xi
and all subkeys k ′.

For the right hypothesis k ′ = k, we will see a correlation
between Ei and S(xi ⊕ k ′), and no correlation for the wrong
subkey hypothesis.
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Differential Power Analysis [KJJ99]

Average trace

Differential trace

Group by predicted

SBox output bit

1 1 1

0 0 0
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DPA: recovering the key

Let bi be least significant bit of S(xi ⊕ k ′). Compute:

d(k ′) =< Ei >bi=1 − < Ei >bi=0

If k = k ′, then we get a difference, which gives a peak in the
differential trace:

d(k ′) =< S(xi ⊕ k) >bi=1 − < S(xi ⊕ k) >bi=0 = 1

If k 6= k ′, then d(k ′) ' 0.

This enables to recover k from the power consumption Ei
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Countermeasures

Hardware countermeasures

Constant power consumption; dual rail logic.
Random delays to desynchronise signals.

Countermeasures for public-key

Randomization based on the existing mathematical structure

Countermeasure for block-ciphers

Randomization based on masking intermediate variable
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Countermeasures for RSA

Implement in constant time

Not always possible with hardware crypto-processors.

Exponent blinding:

Compute md+k·φ(N) = md mod N for random k.

Message blinding

Compute (m · r)d/rd = md mod N for random r .

Modulus randomization

Compute md mod (N · r) and reduce modulo N.

or a combination of the three.
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Masking Countermeasure

Let x be some variable in a block-cipher.

Masking countermeasure: generate a random r , and
manipulate the masked value x ′

x ′ = x ⊕ r

instead of x .

r is random ⇒ x ′ is random
⇒ power consumption of x ′ is random

⇒ no information about x is leaked
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Masking Countermeasure

How do we compute with x ′ = x ⊕ r instead of x ?

Linear operation f (x) (e.g. MixColumns in AES): easy

f (x ′) = f (x)⊕ f (r)

We compute f (x ′) and f (r) separately.
f (x) is now masked with f (r) instead of r .

Non-linear operations (SBOX): randomized table [CJRR99]
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Randomized Table Countermeasure [CJRR99]

S(0)

S(FF)

S(x)

...

...

x

S(u)

Original table in ROM

...

...

x ′
=

x ⊕ r

T (x ′) = S
(
(x⊕r)⊕r

)
⊕s

= S(x)⊕ s

T (u) = S(u ⊕ r)⊕ s

Randomized table in RAM

r -shift

S(0)⊕ s
...
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Second-order Attack

Second-order attack:

E (x ′) E (r)

f (E (x ′),E (r)) correlated with x = x ′ ⊕ r

Requires more curves but can be practical
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Higher-order masking

Solution: n shares instead of 2:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

Any subset of n − 1 shares is uniformly and independently
distributed

If we probe at most n − 1 shares xi , we learn nothing
about x ⇒ secure against a DPA attack of order n − 1.

Linear operations: still easy

Compute the f (xi ) separately

f (x) = f (x1)⊕ f (x2)⊕ · · · ⊕ f (xn)
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Higher-order computation of SBoxes

SBox computation ?

We have input shares x1, . . . , xn, with

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

We must output shares y1, . . . , yn, such that

S(x) = y1 ⊕ y2 ⊕ · · · ⊕ yn

without leaking information about x .
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Existing Higher Order Countermeasure

Ishai-Sahai-Wagner private circuit [ISW03]

Shows how to transform any boolean circuit C into a
circuit of size O(|C | · t2) perfectly secure against t
probes.

Rivain-Prouff (CHES 2010) countermeasure for AES:

S(x) = x254 ∈ F28

Secure multiplication based on [ISW03]:

z = xy =

(
n

⊕
i=1

xi

)
·
(

n

⊕
i=1

yi

)
= ⊕

1≤i ,j≤n
xiyj

Provably secure against t-th order DPA with n ≥ 2t + 1
shares.
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Existing Higher Order Countermeasures

Carlet et al. (FSE 2012) countermeasure for any Sbox.

Lagrange interpolation

S(x) =
2k−1∑
i=0

αi · x i

over F2k , for constant coefficients αi ∈ F2k .

It is possible to evaluate the polynomial with only O(2k/2)
multiplications.

Therefore the asymptotic complexity is O(2k/2 · n2).
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ISW security model

Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

Show that any t probes can be perfectly simulated from at
most n − 1 of the ski ’s.
Those n− 1 shares ski are initially uniformly and independently
distributed.
⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.
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ISW Countermeasure

To protect any circuit, we must show how to protect the XOR
gate and the AND gate.

Protecting the XOR gate:

We receive as input the shares ai ’s and bi ’s such that

a1 ⊕ a2 ⊕ · · · ⊕ an = a

b1 ⊕ b2 ⊕ · · · ⊕ bn = b

We must output ci such that

c1 ⊕ c2 ⊕ · · · ⊕ cn = c = a⊕ b

And similarly for the AND gate
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Protecting a XOR gate

We wish to protect a XOR gate c = a⊕ b

Input: ai such that a1 ⊕ a2 ⊕ · · · ⊕ an = a, and bi such that
b1 ⊕ b2 ⊕ · · · ⊕ bn = b
Output: ci such that c1 ⊕ c2 ⊕ · · · ⊕ cn = c = a⊕ b

Algorithm: let
ci ← ai ⊕ bi

for all 1 ≤ i ≤ n
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Proof of security for the XOR gate

Proof of security

We prove that any set of t probes can be perfectly simulated
from the knowledge of at most t inputs ai and bi .

Constructed the subset I of inputs:

Let I ← ∅
If there is a probe for ai or bi or ci , add i to I .
We get |I | ≤ t
Any probe can be simulated from the knowledge of a|I and b|I ,
where a|I = (ai )i∈I .

If t ≤ n − 1, the t probes can be perfectly simulated without
the knowledge of a and b.
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Protecting a AND gate

We wish to protect a AND gate c = ab
Input: ai and bi such that

a1 ⊕ a2 ⊕ · · · ⊕ an = a

b1 ⊕ b2 ⊕ · · · ⊕ bn = b

Output: ci such that

c1 ⊕ c2 ⊕ · · · ⊕ cn = c

Algorithm: for each 1 ≤ i < j ≤ n, generate a random rij , and
let

zij ← rij

zji ← (zij ⊕ aibj)⊕ ajbi

ci ← aibi ⊕
⊕
j 6=i

zij

Every AND gate is expanded into a “gadget” of O(n2) gates.
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Protecting the AND gate

The ISW matrix:

0 · · · r1,i? · · · r1,n c1

...
. . .

...
...( ri?,1 · · · 0 · · · ri?,n ) ci?

...
. . .

...
...

rn,1 · · · rn,i? · · · 0 cn
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Proof of security

As previously, we must show that any set of t probes can be
perfectly simulated from the knowledge of at most 2t inputs
ai and bi .

Construction of the set I .

Initially I ← ∅.
If a wire ai , bi , aibi , zij (for i 6= j) is probed, add i to I .
Same for a sum of values of the above form, including ci .
For the wires aibj or zij ⊕ aibj for i 6= j , add both i and j to I

We have |I | ≤ 2t

We must show that any probe can be simulated from the
knowledge of a|I and b|I , where a|I = (ai )i∈I .
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Simulation of the wires

Simulation of the wires using only a|I and b|I
Simulation of ai , bi , aibi for i ∈ I : obvious
Simulation of zij when i ∈ I but j /∈ I

If i < j , generate a random zij , as in the real circuit
If i > j , then in the real circuit zij = (zji ⊕ ajbi )⊕ aibj , where
zji = r where r ← {0, 1}. Instead we can let
zji ← (r ⊕ ajbi )⊕ aibj , which gives zij = r . Since j /∈ I , zji is
not used is the computation of any probe, so no need to know
aj and bj . Summary: in both cases let zij ← {0, 1}

Simulation of zij when both i , j ∈ I : obvious
Simulation of a sum of the above terms: obvious
Simulation of aibj or zij ⊕ aibj : obvious since in that case
i , j ∈ I
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Proof of security

Simulation for a single gate

Since |I | ≤ 2t, with a number of shares n ≥ 2t + 1, we can
perfectly simulate all the probes in the circuit.
Namely since |I | ≤ n − 1, the sets a|I and b|I can be perfectly
simulated by generating

Simulation of a general circuit

Any circuit C can be written with XOR and AND gates only
We examine every gadget g in the expanded circuit C ′ as
previously, building the set I
We still have |I | ≤ 2t
We perform the simulation as previously. Inductively for each
gadget g , the shares of the inputs to g belonging to I are
perfectly simulated. Hence we can perfectly simulate all
probes, assuming n ≥ 2t + 1.

Conclusion

Any boolean circuit C can be transformed into a circuit of size
O(|C | · t2) perfectly secure against t probes.
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