Side-Channel Attacks

Jean-Sébastien Coron

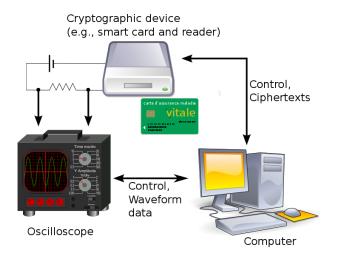
University of Luxembourg

December 19, 2017

Jean-Sébastien Coron Side-Channel Attacks

э

Side-channel Attacks



э

▲ □ ▶ ▲ □ ▶ ▲

- Consists in obtaining a side-channel information during the execution of a cryptographic algorithm
- Side-channel Attacks
 - Timing attack
 - Power attack
 - Fault attack
 - Differential Power Analysis
- Side-channel countermeasures
 - Countermeasures for RSA
 - The masking countermeasure
 - The Ishai-Sahai-Wagner transform

- The implementation of a cryptographic algorithm can reveal more information
- Passive attacks :
 - Timing attacks (Kocher, 1996): measure the execution time
 - Power attacks (Kocher et al., 1999): measure the power consumption
- Active attacks :
 - Fault attacks (Boneh et al., 1997): induce a fault during computation
 - Invasive attacks: probing.

Timing attacks

• Described on RSA by Kocher at Crypto 96.

• Let
$$d = \sum_{i=0}^{n} 2^{i} d_{i}$$
.

• Computing $m^d \mod N$ using square and multiply :

• Let
$$z \leftarrow m$$

For $i = n - 1$ downto 0 do
Let $z \leftarrow z^2 \mod N$
If $d_i = 1$ let $z \leftarrow z \cdot m \mod N$

Attack

- Let T_i be the total time needed to compute $m_i^d \mod N$
- Let t_i be the time needed to compute $m_i^3 \mod N$
- If d_{n-1} = 1, the variables t_i and T_i are correlated, otherwise they are independent. This gives d_{n-1}.

- Based on measuring power consumption
 - Introduced by Kocher et al. at Crypto 99.
 - Initially applied on DES, but any cryptographic algorithm is vulnerable.
- Attack against exponentiation $m^d \mod N$:
 - If power consumption correlated with some bits of $m^3 \mod N$, this means that $m^3 \mod N$ was effectively computed, and so $d_{n-1} = 1$.
 - Enables to recover d_{n-1} and by recursion the full d.

- Induce a fault during computation
 - By modifying voltage input
- RSA with CRT: to compute $s = m^d \mod N$, compute :
 - $s_p = m^{d_p} \mod p$ where $d_p = d \mod p 1$
 - $s_q = m^{d_q} \mod q$ where $d_q = d \mod q 1$
 - and recombine s_p and s_q using CRT to get $s = m^d \mod N$
- Fault attack against RSA with CRT (Boneh et al., 1996)
 - If s_p is incorrect, then $s^e \neq m \mod N$ while $s^e = m \mod q$
 - Therefore, $gcd(N, s^e m)$ gives the prime factor q.

- The attack was originally described on DES, but any block-cipher is vulnerable.
- The attack is based on a statistical analysis of the power consumption measured during the execution of a block cipher.
- It enables to quickly recover the key, given a few power acquisitions.

Given as input x ∈ {0,1}ⁿ for some small n (say n = 8), consider the computation:

$$y=S(x\oplus k)$$

where $y, k \in \{0, 1\}^n$ and k is a subkey.

- Let *E* be the power consumption when $S(x \oplus k)$ is computed
 - We assume that *E* is correlated to $S(x \oplus k)$
 - For example

$$E=H(S(x\oplus k))+B$$

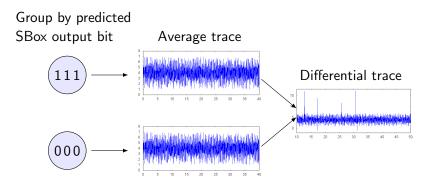
where H() is the Hamming weight and B is some noise.

• Assume that we can get many power acquisitions:

$$E_i = H(S(x_i \oplus k)) + B_i$$

for known inputs x_i 's, but unknown subkey k.

- We are going to try all possible hypothesis k' ∈ {0,1}ⁿ for the subkey, and compute all possible S(x_i ⊕ k') for all inputs x_i and all subkeys k'.
- For the right hypothesis k' = k, we will see a correlation between E_i and S(x_i ⊕ k'), and no correlation for the wrong subkey hypothesis.



• Let b_i be least significant bit of $S(x_i \oplus k')$. Compute:

$$d(k') = \langle E_i \rangle_{b_i=1} - \langle E_i \rangle_{b_i=0}$$

• If k = k', then we get a difference, which gives a peak in the differential trace:

$$d(k') = < S(x_i \oplus k) >_{b_i=1} - < S(x_i \oplus k) >_{b_i=0} = 1$$

• If
$$k \neq k'$$
, then $d(k') \simeq 0$.

• This enables to recover k from the power consumption E_i

- Hardware countermeasures
 - Constant power consumption; dual rail logic.
 - Random delays to desynchronise signals.
- Countermeasures for public-key
 - Randomization based on the existing mathematical structure
- Countermeasure for block-ciphers
 - Randomization based on masking intermediate variable

Countermeasures for RSA

- Implement in constant time
 - Not always possible with hardware crypto-processors.
- Exponent blinding:
 - Compute $m^{d+k\cdot\phi(N)} = m^d \mod N$ for random k.
- Message blinding
 - Compute $(m \cdot r)^d / r^d = m^d \mod N$ for random r.
- Modulus randomization
 - Compute $m^d \mod (N \cdot r)$ and reduce modulo N.
- or a combination of the three.

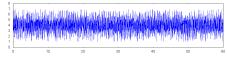
- Let x be some variable in a block-cipher.
- Masking countermeasure: generate a random r, and manipulate the masked value x'

$$x' = x \oplus r$$

instead of x.

• r is random $\Rightarrow x'$ is random

 \Rightarrow power consumption of x' is random



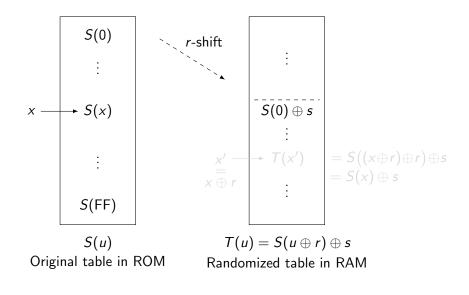
 \Rightarrow no information about x is leaked

- How do we compute with $x' = x \oplus r$ instead of x ?
- Linear operation f(x) (e.g. MixColumns in AES): easy

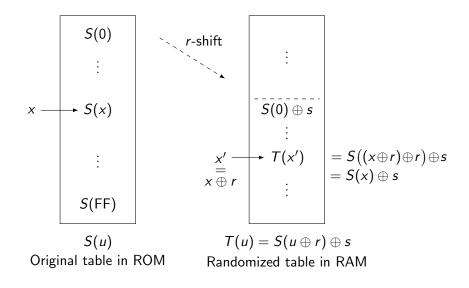
$$f(x')=f(x)\oplus f(r)$$

- We compute f(x') and f(r) separately.
- f(x) is now masked with f(r) instead of r.
- Non-linear operations (SBOX): randomized table [CJRR99]

Randomized Table Countermeasure [CJRR99]

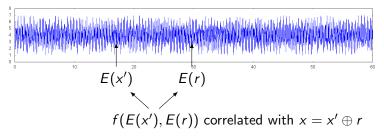


Randomized Table Countermeasure [CJRR99]



Second-order Attack

• Second-order attack:



• Requires more curves but can be practical

Higher-order masking

• Solution: *n* shares instead of 2:

$$x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

- Any subset of n-1 shares is uniformly and independently distributed
 - If we probe at most n − 1 shares x_i, we learn nothing about x ⇒ secure against a DPA attack of order n − 1.
- Linear operations: still easy
 - Compute the $f(x_i)$ separately

$$f(x) = f(x_1) \oplus f(x_2) \oplus \cdots \oplus f(x_n)$$

- SBox computation ?
 - We have input shares x_1, \ldots, x_n , with

 $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$

• We must output shares y_1, \ldots, y_n , such that

$$S(x)=y_1\oplus y_2\oplus\cdots\oplus y_n$$

• without leaking information about x.

Existing Higher Order Countermeasure

- Ishai-Sahai-Wagner private circuit [ISW03]
 - Shows how to transform any boolean circuit C into a circuit of size O(|C| · t²) perfectly secure against t probes.
- Rivain-Prouff (CHES 2010) countermeasure for AES:

$$S(x) = x^{254} \in \mathbb{F}_{2^8}$$

• Secure multiplication based on [ISW03]:

$$z = xy = \left(\bigoplus_{i=1}^{n} x_i\right) \cdot \left(\bigoplus_{i=1}^{n} y_i\right) = \bigoplus_{1 \le i,j \le n} x_i y_j$$

Provably secure against *t*-th order DPA with *n* ≥ 2*t* + 1 shares.

Existing Higher Order Countermeasures

- Carlet et al. (FSE 2012) countermeasure for any Sbox.
 - Lagrange interpolation

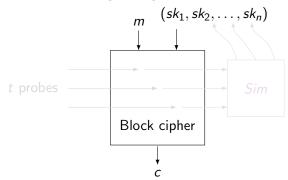
$$S(x) = \sum_{i=0}^{2^k - 1} \alpha_i \cdot x^i$$

over \mathbb{F}_{2^k} , for constant coefficients $\alpha_i \in \mathbb{F}_{2^k}$.

- It is possible to evaluate the polynomial with only O(2^{k/2}) multiplications.
- Therefore the asymptotic complexity is $\mathcal{O}(2^{k/2} \cdot n^2)$.

ISW security model

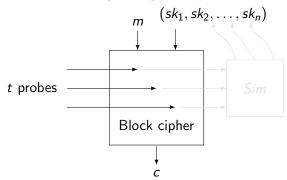
• Simulation framework of [ISW03]:



- Show that any *t* probes can be perfectly simulated from at most *n*−1 of the *sk_i*'s.
- Those *n* 1 shares *sk_i* are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

ISW security model

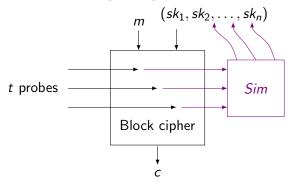
• Simulation framework of [ISW03]:



- Show that any *t* probes can be perfectly simulated from at most *n*−1 of the *sk_i*'s.
- Those *n* 1 shares *sk_i* are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

ISW security model

• Simulation framework of [ISW03]:



- Show that any *t* probes can be perfectly simulated from at most *n* − 1 of the *sk_i*'s.
- Those *n*-1 shares *sk_i* are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the *t* probes, since he could perfectly simulate those *t* probes by himself.

ISW Countermeasure

- To protect any circuit, we must show how to protect the XOR gate and the AND gate.
- Protecting the XOR gate:
 - We receive as input the shares a_i 's and b_i 's such that

 $a_1 \oplus a_2 \oplus \cdots \oplus a_n = a$

$$b_1 \oplus b_2 \oplus \cdots \oplus b_n = b$$

• We must output *c_i* such that

$$c_1 \oplus c_2 \oplus \cdots \oplus c_n = c = a \oplus b$$

And similarly for the AND gate

- We wish to protect a XOR gate $c = a \oplus b$
 - Input: a_i such that $a_1 \oplus a_2 \oplus \cdots \oplus a_n = a$, and b_i such that $b_1 \oplus b_2 \oplus \cdots \oplus b_n = b$
 - Output: c_i such that $c_1 \oplus c_2 \oplus \cdots \oplus c_n = c = a \oplus b$
- Algorithm: let

$$c_i \leftarrow a_i \oplus b_i$$

for all $1 \leq i \leq n$

Proof of security for the XOR gate

- Proof of security
 - We prove that any set of *t* probes can be perfectly simulated from the knowledge of at most *t* inputs *a_i* and *b_i*.
- Constructed the subset *I* of inputs:
 - Let $I \leftarrow \emptyset$
 - If there is a probe for a_i or b_i or c_i , add i to I.
 - We get $|I| \leq t$
 - Any probe can be simulated from the knowledge of $a_{|I}$ and $b_{|I}$, where $a_{|I} = (a_i)_{i \in I}$.
- If t ≤ n − 1, the t probes can be perfectly simulated without the knowledge of a and b.

Protecting a AND gate

- We wish to protect a AND gate c = ab
 - Input: a_i and b_i such that

$$a_1 \oplus a_2 \oplus \cdots \oplus a_n = a$$

 $b_1 \oplus b_2 \oplus \cdots \oplus b_n = b$

• Output: c_i such that

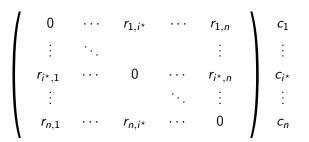
$$c_1 \oplus c_2 \oplus \cdots \oplus c_n = c$$

• Algorithm: for each $1 \le i < j \le n$, generate a random r_{ij} , and let

$$egin{aligned} & z_{ij} \leftarrow r_{ij} \ & z_{ji} \leftarrow (z_{ij} \oplus a_i b_j) \oplus a_j b_i \ & c_i \leftarrow a_i b_i \oplus igoplus_{j
eq i} z_{ij} \end{aligned}$$

• Every AND gate is expanded into a "gadget" of $\mathcal{O}(n^2)$ gates.

• The ISW matrix:



- As previously, we must show that any set of *t* probes can be perfectly simulated from the knowledge of at most 2*t* inputs *a_i* and *b_i*.
- Construction of the set *I*.
 - Initially $I \leftarrow \emptyset$.
 - If a wire a_i , b_i , a_ib_i , z_{ij} (for $i \neq j$) is probed, add i to I.
 - Same for a sum of values of the above form, including c_i .
 - For the wires $a_i b_j$ or $z_{ij} \oplus a_i b_j$ for $i \neq j$, add both i and j to I
- We have $|I| \leq 2t$
- We must show that any probe can be simulated from the knowledge of a_{|1} and b_{|1}, where a_{|1} = (a_i)_{i∈1}.

Simulation of the wires

- Simulation of the wires using only $a_{|I}$ and $b_{|I}$
 - Simulation of a_i , b_i , a_ib_i for $i \in I$: obvious
 - Simulation of z_{ij} when $i \in I$ but $j \notin I$
 - If i < j, generate a random z_{ij} , as in the real circuit
 - If i > j, then in the real circuit $z_{ij} = (z_{ji} \oplus a_j b_i) \oplus a_i b_j$, where $z_{ji} = r$ where $r \leftarrow \{0, 1\}$. Instead we can let $z_{ji} \leftarrow (r \oplus a_j b_i) \oplus a_i b_j$, which gives $z_{ij} = r$. Since $j \notin I$, z_{ji} is not used is the computation of any probe, so no need to know a_j and b_j . Summary: in both cases let $z_{ij} \leftarrow \{0, 1\}$
 - Simulation of z_{ij} when both $i, j \in I$: obvious
 - Simulation of a sum of the above terms: obvious
 - Simulation of $a_i b_j$ or $z_{ij} \oplus a_i b_j$: obvious since in that case $i, j \in I$

Proof of security

- Simulation for a single gate
 - Since |I| ≤ 2t, with a number of shares n ≥ 2t + 1, we can
 perfectly simulate all the probes in the circuit.
 - Namely since $|I| \le n-1$, the sets $a_{|I|}$ and $b_{|I|}$ can be perfectly simulated by generating
- Simulation of a general circuit
 - Any circuit C can be written with XOR and AND gates only
 - We examine every gadget g in the expanded circuit C' as previously, building the set I
 - We still have $|I| \leq 2t$
 - We perform the simulation as previously. Inductively for each gadget g, the shares of the inputs to g belonging to I are perfectly simulated. Hence we can perfectly simulate all probes, assuming $n \ge 2t + 1$.
- Conclusion
 - Any boolean circuit C can be transformed into a circuit of size $O(|C| \cdot t^2)$ perfectly secure against t probes.