
Introduction to Fully Homomorphic Encryption

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Overview

What is Fully Homomorphic Encryption (FHE) ?

Basic properties
Cloud computing on encrypted data: the server should process
the data without learning the data.

4 generations of FHE:

1st gen: [Gen09], [DGHV10]: bootstrapping, slow
2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).
3rd gen: [GSW13]: no modulus
switching, slow noise growth
4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Overview

What is Fully Homomorphic Encryption (FHE) ?

Basic properties
Cloud computing on encrypted data: the server should process
the data without learning the data.

4 generations of FHE:

1st gen: [Gen09], [DGHV10]: bootstrapping, slow
2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).
3rd gen: [GSW13]: no modulus
switching, slow noise growth
4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Overview

What is Fully Homomorphic Encryption (FHE) ?

Basic properties
Cloud computing on encrypted data: the server should process
the data without learning the data.

4 generations of FHE:

1st gen: [Gen09], [DGHV10]: bootstrapping, slow
2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).
3rd gen: [GSW13]: no modulus
switching, slow noise growth
4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption

Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption

Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption with RSA

Multiplicative property of RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c = c1 · c2 = (m1 ·m2)e mod N

Homomorphic encryption: given c1 and c2, we can compute
the ciphertext c for m1 ·m2 mod N

using only the public-key
without knowing the plaintexts m1 and m2.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphism of RSA

RSA homomorphism: decryption function δ(x) = xd mod N

δ(c1 × c2) = δ(c1)× δ(c2) (mod N)

Ciphertexts Z/NZ× Z/NZ Z/NZ

Plaintexts Z/NZ× Z/NZ Z/NZ

×

δ,δ δ

×

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem [P99]

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Ciphertexts Z/N2Z× Z/N2Z Z/N2Z

Plaintexts Z/NZ× Z/NZ Z/NZ

×

δ,δ δ

+

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Application of Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Application: e-voting.

Voter i encrypts his vote mi ∈ {0, 1} into:

ci = gmi · zNi mod N2

Votes can be aggregated using only the public-key:

c =
∏
i

ci = g

∑
i

mi

· z mod N2

c is eventually decrypted to recover
m =

∑
i mi

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic encryption

Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Fully homomorphic: homomorphic for both addition and
multiplication

Open problem until Gentry’s
breakthrough in 2009.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic public-key encryption

We restrict ourselves to public-key encryption of a single bit:

0
Epk−→ 203ef6124 . . . 23ab8716, 1

Epk−→ b327653c1 . . . db326516

Encryption must be probabilistic.

Fully homomorphic property

Given Epk(x) and Epk(y), one can compute Epk(x ⊕ y) and
Epk(x · y) without knowing the private-key.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic public-key encryption

We restrict ourselves to public-key encryption of a single bit:

0
Epk−→ 203ef6124 . . . 23ab8716, 1

Epk−→ b327653c1 . . . db326516

Encryption must be probabilistic.

Fully homomorphic property

Given Epk(x) and Epk(y), one can compute Epk(x ⊕ y) and
Epk(x · y) without knowing the private-key.

x y

+

x ⊕ y

x y

×

x · y

Epk(x) Epk(y)

+

Epk(x ⊕ y)

Epk(x) Epk(y)

×

Epk(x · y)

Ciphertext worldPlaintext world

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Evaluation of any function

Universality

We can evaluate homomorphically any boolean computable
function f : {0, 1}n → {0, 1}

x1 x2 x3 x4 x5

+ × ×

× + +

× +

×

f (x1, x2, x3, x4, x5)

Epk(x1) Epk(x2) Epk(x3) Epk(x4) Epk(x5)

+ × ×

× + +

× +

×

Epk(f (x1, x2, x3, x4, x5))

Ciphertext worldPlaintext world

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (1)

Alice wants to outsource the computation of f (x)

but she wants to keep x private

She encrypts the bits xi of x into ci = Epk(xi) for her pk

and she sends the ci ’s to the server

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (1)

ci = Epk(xi)

Alice wants to outsource the computation of f (x)

but she wants to keep x private

She encrypts the bits xi of x into ci = Epk(xi) for her pk

and she sends the ci ’s to the server

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

ci = Epk(xi)

The server homomorphically evaluates f (x)

by writing f (x) = f (x1, . . . , xn) as a boolean circuit.
Given Epk(xi), the server eventually obtains c = Epk(f (x))

Finally Alice decrypts c into y = f (x)

The server does not learn x .
Only Alice can decrypt to recover f (x).
Alice could also keep f private.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

ci = Epk(xi)

c = Epk(f (x))

The server homomorphically evaluates f (x)

by writing f (x) = f (x1, . . . , xn) as a boolean circuit.
Given Epk(xi), the server eventually obtains c = Epk(f (x))

Finally Alice decrypts c into y = f (x)

The server does not learn x .
Only Alice can decrypt to recover f (x).
Alice could also keep f private.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

ci = Epk(xi)

c = Epk(f (x))

y = Dsk(c) = f (x)

The server homomorphically evaluates f (x)

by writing f (x) = f (x1, . . . , xn) as a boolean circuit.
Given Epk(xi), the server eventually obtains c = Epk(f (x))

Finally Alice decrypts c into y = f (x)

The server does not learn x .
Only Alice can decrypt to recover f (x).
Alice could also keep f private.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully Homomorphic Encryption: first generation

1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
Public-key compression [CNT12]
Batch and homomorphic evaluation of AES [CCKLLTY13].

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully Homomorphic Encryption: first generation

1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
Public-key compression [CNT12]
Batch and homomorphic evaluation of AES [CCKLLTY13].

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV Scheme

Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

Decryption:
(c mod p) mod 2 = m

Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Properties of DGHV

Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

c1 + c2 is an encryption of m1 + m2 mod 2 = m1 ⊕m2

Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

c1 · c2 is an encryption of m1 ·m2

Noise becomes twice larger.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Properties of DGHV

Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

c1 + c2 is an encryption of m1 + m2 mod 2 = m1 ⊕m2

Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

c1 · c2 is an encryption of m1 ·m2

Noise becomes twice larger.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphism of DGHV

DGHV ciphertext:

c = q · p + 2r + m

Homomorphism: δ(x) = (x mod p) mod 2

only works if noise r is smaller than p

Ciphertexts Z× Z Z

Plaintexts Z2 × Z2 Z2

+,×

δ,δ δ

⊕,×

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Somewhat homomorphic scheme

The number of multiplications is limited.

Noise grows with the number of multiplications.
Noise must remain < p for correct decryption.

p

×

ρ

×

p

2ρ

×

p

4ρ

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key Encryption with DGHV

For now, encryption requires the knowledge of the secret p:

c = q · p + 2r + m

We can actually turn it into a public-key encryption scheme

Using the additively homomorphic property

Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key Encryption with DGHV

For now, encryption requires the knowledge of the secret p:

c = q · p + 2r + m

We can actually turn it into a public-key encryption scheme

Using the additively homomorphic property

Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bounding ciphertext size

DGHV multiplication over Z

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′ · p + 2r ′ + m1 ·m2

Problem: ciphertext size has doubled.

Constant ciphertext size

We publish an encryption of 0 without noise x0 = q0 · p
We reduce the product modulo x0

c3 = c1 · c2 mod x0

= q′′ · p + 2r ′ + m1 ·m2

Ciphertext size remains constant

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key size

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

Public-key size:

τ · γ = 2 · 1011 bits = 25 GB !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ' 2 700 bits instead of
2 · 107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ' 2 700 bits instead of
2 · 107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ' 2 700 bits instead of
2 · 107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ' 2 700 bits instead of
2 · 107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Compressed Public Key

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

Old pk : 25 GB

η ' 2 700 bits

δ1 =

δ2 =

δi =

δτ =

New pk : 3.4 MB !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Semantic security of DGHV

Semantic security [GM82] for m ∈ {0, 1}:
Knowing pk, the distributions Epk(0) and Epk(1) are
computationally hard to distinguish.

The DGHV scheme is semantically secure, under the
approximate-gcd assumption.

Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.
This remains the case with the compressed public-key, under
the random oracle model.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The approximate GCD assumption

Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

Brute force attack on the noise

Given x0 = q0 · p and x1 = q1 · p + r1 with |r1| < 2ρ, guess r1
and compute gcd(x0, x1 − r1) to recover p.
Requires 2ρ gcd computation
Countermeasure: take a sufficiently large ρ

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Improved attack against PACD [CN12]

Given x0 = p · q0 and many xi = p · qi + ri , find p.

Improved attack in Õ(2ρ/2) [CN12]

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

= gcd

(
x0,

m−1∏
a=0

m−1∏
b=0

(x1 − b −m · a) mod x0

)
, where m = 2ρ/2

= gcd

(
x0,

m−1∏
a=0

f (a) mod x0

)

f (y) :=
m−1∏
b=0

(x1 − b −m · y) mod x0

Evaluate the polynomial f (y) at m
points in time Õ(m) = Õ(2ρ/2)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Approximate GCD attack

Consider t integers: xi = p · qi + ri and x0 = p · q0.

Consider a vector ~u orthogonal to the xi ’s:

t∑
i=1

ui · xi = 0 mod x0

This gives
∑t

i=1 ui · ri = 0 mod p.

If the ui ’s are sufficiently small, since the ri ’s are small this
equality will hold over Z.

Such vector ~u can be found using LLL.

By collecting many orthogonal vectors one can recover ~r and
eventually the secret key p

Countermeasure

The size γ of the xi ’s must be
sufficiently large.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (simplified)

Key generation:
Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
Size of p is η. Size of xi is γ. Size of ri is ρ.

Encryption of a message m ∈ {0, 1}:
Generate random εi ← {0, 1} and a random integer r in
(−2ρ

′
, 2ρ

′
), and output the ciphertext:

c = m + 2r + 2
τ∑

i=1

εi · xi mod x0

Decryption:

c ≡ m + 2r + 2
τ∑

i=1

εi · ri (mod p)

Output m← (c mod p) mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (simplified)

Key generation:
Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
Size of p is η. Size of xi is γ. Size of ri is ρ.

Encryption of a message m ∈ {0, 1}:
Generate random εi ← {0, 1} and a random integer r in
(−2ρ

′
, 2ρ

′
), and output the ciphertext:

c = m + 2r + 2
τ∑

i=1

εi · xi mod x0

Decryption:

c ≡ m + 2r + 2
τ∑

i=1

εi · ri (mod p)

Output m← (c mod p) mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (simplified)

Key generation:
Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
Size of p is η. Size of xi is γ. Size of ri is ρ.

Encryption of a message m ∈ {0, 1}:
Generate random εi ← {0, 1} and a random integer r in
(−2ρ

′
, 2ρ

′
), and output the ciphertext:

c = m + 2r + 2
τ∑

i=1

εi · xi mod x0

Decryption:

c ≡ m + 2r + 2
τ∑

i=1

εi · ri (mod p)

Output m← (c mod p) mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0

c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0

c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0

c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0

c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0

c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0

c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0

c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0

c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Gentry’s technique to get fully homomorphic encryption

To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

Only a polynomial f of small degree can computed
homomorphically, for F = {f (b1, . . . , bt) : deg f ≤ d}
Vpk(f ,Epk(b1), . . . ,Epk(bt))→ Epk(f (b1, . . . , bt))

Ciphertexts Ct C

Plaintexts (Z2)t Z2

Vpk (f ,···)

Dsk (···) Dsk (·)

f

f ∈ F

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh: bootstrapping

Gentry’s breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

Evaluate the decryption polynomial not on the bits of the
ciphertext c and the secret key sk , but homomorphically on
the encryption of those bits.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption

Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:

refreshed
ciphertext

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh: bootstrapping

Gentry’s breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for
the same plaintext.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption

Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:

refreshed
ciphertext

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping

Evaluating the decryption function homomorphically

with f = Dsk(·)
We obtain a new ciphertext C? with possibly less noise

Ciphertexts Ct C

Plaintexts (Z2)t Z2

Vpk (f ,···)

Dsk (···) Dsk (·)

f

f ∈ F

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping

Evaluating the decryption function homomorphically

with f = Dsk(·)
We obtain a new ciphertext C? with possibly less noise

Ciphertexts Ct C

Plaintexts (Z2)t Z2

Vpk (f ,···)

Dsk (···) Dsk (·)

f

f ∈ F

C = (c1, . . . , ct) m

(Epk(c1), . . . ,Epk(ct)) C ?

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping (2)

Evaluating the decryption function homomorphically

Actually we use f = D(·, ·)
Using public (Epk(sk1), . . . ,Epk(skt))
We obtain a new ciphertext C? with possibly less noise

Ciphertexts C2t C

Plaintexts (Z2)2t Z2

Vpk (f ,···)

Dsk (···) Dsk (·)

f

f ∈ F

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping (2)

Evaluating the decryption function homomorphically

Actually we use f = D(·, ·)
Using public (Epk(sk1), . . . ,Epk(skt))
We obtain a new ciphertext C? with possibly less noise

Ciphertexts C2t C

Plaintexts (Z2)2t Z2

Vpk (f ,···)

Dsk (···) Dsk (·)

f

f ∈ F

SK = (sk1, . . . , skt) m
C = (c1, . . . , ct)

(Epk(sk1), . . . ,Epk(skt))
(Epk(c1), . . . ,Epk(ct)) C ?

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Squashing the decryption procedure

Evaluating the decryption function homomorphically

We use f = D(·, ·).
We must have f ∈ F : f must be a low-degree polynomial in
the inputs
!!! This is not the case with D(p, c) = (c mod p) mod 2

“Squash” the decryption procedure:

express the decryption function as a low degree polynomial in
the bits of the ciphertext c and the secret key sk (equivalently
a boolean circuit of small depth).

Ciphertexts C2t C

Plaintexts (Z2)2t Z2

Vpk (f ,···)

Dsk (···) Dsk (·)

f

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Squashing the decryption procedure

Evaluating the decryption function homomorphically

We use f = D(·, ·).
We must have f ∈ F : f must be a low-degree polynomial in
the inputs
!!! This is not the case with D(p, c) = (c mod p) mod 2

“Squash” the decryption procedure:

express the decryption function as a low degree polynomial in
the bits of the ciphertext c and the secret key sk (equivalently
a boolean circuit of small depth).

Ciphertexts C2t C

Plaintexts (Z2)2t Z2

Vpk (f ,···)

Dsk (···) Dsk (·)

f

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh

Refreshed ciphertext:

If the degree of the decryption polynomial D(·, ·) is small
enough, the resulting noise in the new ciphertext can be
smaller than in the original ciphertext.

C

Refresh

C ?

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic encryption

Fully homomorphic encryption

Using this “ciphertext refresh” procedure, the number of
homomorphic operations becomes unlimited
We get a fully homomorphic encryption scheme.

Refresh Refresh

×

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The squashed scheme from DGHV

The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

Alternative decryption formula for c = q · p + 2r + m

We have q = bc/pe and c = q + m (mod 2)
Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The squashed scheme from DGHV

The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

Alternative decryption formula for c = q · p + 2r + m

We have q = bc/pe and c = q + m (mod 2)
Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The squashed scheme from DGHV

The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

Alternative decryption formula for c = q · p + 2r + m

We have q = bc/pe and c = q + m (mod 2)
Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Squashed decryption

Alternative equation

m← [c]2 ⊕ [bc · (1/p)e]2

Secret-share 1/p as a sparse subset sum:

1/p =
Θ∑
i=1

si · yi + ε

with random public yi with precision 2−κ, and sparse secret
si ∈ {0, 1}.
Decryption becomes:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · (yi · c)

⌉]
2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Squashed decryption

Alternative decryption equation:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · zi

⌉]
2

where zi = yi · c for public yi ’s

Since si is sparse with H(si) = θ, only n = dlog2(θ + 1)e bits
of precision for zi = yi · c is required

With θ = 15, only n = 4 bits of precision for zi = yi · c
The decryption function can then be expressed as a
polynomial of low degree (30) in the si ’s.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The decryption circuit

We must compute: m← [c]2 ⊕
[⌊

Θ∑
i=i

si · zi
⌉]

2

Trick from Gentry-Halevi:

Split the Θ secret key bits into θ boxes of size B = Θ/θ each.
Then only one secret key bit inside every box is equal to one

New decryption formula: m← [c]2 ⊕
[⌊

θ∑
k=1

(
B∑
i=1

sk,izk,i

)⌉]
2

The sum qk
def
=
∑B

i=1 sk,izk,i is obtained by adding B numbers,
only one being non-zero.
To compute the j-th bit of qk it
suffices to xor all the j-th bits of the
numbers sk,i · zk,i .

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The decryption circuit

sb0
1 sb1

1

× =

Sb1

0
1

0

0
0

1

0

0

1

0

× 1 0 0 1 0
z1,1

× 0 0 1 1 0
z1,2

× 1 1 0 1 0

× 0 0 1 1 0
z1,B

= 0 0 0 0 0

= 0 0 0 0 0

= 1 1 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

011 1 0

sb0√
θ

sb1√
θ

× =

Sbθ

0
1

0

1
0

0

0

0

1

0

× 0 0 1 1 1
zθ,1

× 1 0 0 1 0
zθ,2

× 0 1 0 1 0

× 1 0 1 1 0
zθ,B

= 0 0 0 0 0

= 0 0 0 0 0

= 0 1 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

010 1 0

011 1 0

q1

001 1 0

qk

010 1 0

qθ

+

+

+

+

=

⊕

Plaintext bit

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Grade School addition

The decryption equation is now:

m← [c]2 ⊕

[⌊
θ∑

k=1

qk

⌉]
2

where the qk ’s are rational in [0, 2) with n bits of precision
after the binary point.

11111

11111

11111

248

359

79

15

15 815

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Gentry’s Bootstrapping

The decryption circuit

Can now be expressed as a polynomial of small degree d in the
secret-key bits si , given the zi = c · yi .

m = Czi (s1, . . . , sΘ)

To refresh a ciphertext:

Publish an encryption of the secret-key bits σi = Epk(si)
Homomorphically evaluate m = Czi (s1, . . . , sΘ), using the
encryptions σi = Epk(si)
We get Epk(m), that is a new ciphertext but possibly with less
noise (a “recryption”).
The new noise has size ' d · ρ and is
independent of the initial noise.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Four generations of FHE

First generation: bootstrapping, slow

Breakthrough scheme of Gentry [G09], based on ideal lattices.
FHE over the integers: [DGHV10]

Second generation: [BV11], [BGV11]

More efficient, (R)LWE based. Relinearization, depth-linear
construction with modulus switching.

Third generation [GSW13]

No modulus switching, slow noise growth
Improved bootstrapping: [BV14], [AP14]

Fourth gen: [CKKS17]

Approximate floating point arithmetic

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[~x]→ Zq[x] given by evaluation at
secret ~s = (s1, . . . , sn)

Ciphertexts Zq[~x]× Zq[~x] Zq[~x]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (~s) = 2e + m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (~x) with
|fi (~s) mod q| � q are comp. indist.
from random fi (~x) modulo q.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[~x]→ Zq[x] given by evaluation at
secret ~s = (s1, . . . , sn)

Ciphertexts Zq[~x]× Zq[~x] Zq[~x]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (~s) = 2e + m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (~x) with
|fi (~s) mod q| � q are comp. indist.
from random fi (~x) modulo q.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[~x]→ Zq[x] given by evaluation at
secret ~s = (s1, . . . , sn)

Ciphertexts Zq[~x]× Zq[~x] Zq[~x]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (~s) = 2e + m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (~x) with
|fi (~s) mod q| � q are comp. indist.
from random fi (~x) modulo q.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Regev’s scheme based on LWE [R05]

Key generation

Secret-key: ~s ∈ (Zq)n

Public-key: fi (~x) such that fi (~s) = 2ei with ei � q

Encryption of m ∈ {0, 1}

c(~x) = m +
τ∑

i=1

bi · fi (~x) for random bi ← {0, 1}

Decryption

Compute v = c(~s) = m + 2 ·
τ∑

i=1

bi · ei (mod q)

Recover m = v mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The BV scheme: relinearization [BV11]

Regev’s ciphertext:

c(~x) such that c(~s) = m + 2e mod q, with ~s ∈ (Zq)n.

Multiplication of Regev’s ciphertext

c(~x) = c1(~x) · c2(~x)
c(~s) = (m1 + 2e1) · (m2 + 2e2) = m1m2 + 2e (mod q)

Problem: c(~x) is a quadratic polynomial with (n + 1)2

coefficients !

instead of n + 1 for the original ciphertexts c1(~x) and c2(~x)

Relinearization [BV11]:

Publish polynomials pj,k,t(~x) = 2txjxk + Lj,k,t(~x)
with pj,k,t(~s) = 2ej,k,t mod q
remove the quadratic terms ajkxjxk by
subtraction, using a binary
decomposition of ajk .
Only linear terms remain, so ciphertext
size remains constant

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The BV scheme: relinearization [BV11]

Regev’s ciphertext:

c(~x) such that c(~s) = m + 2e mod q, with ~s ∈ (Zq)n.

Multiplication of Regev’s ciphertext

c(~x) = c1(~x) · c2(~x)
c(~s) = (m1 + 2e1) · (m2 + 2e2) = m1m2 + 2e (mod q)

Problem: c(~x) is a quadratic polynomial with (n + 1)2

coefficients !

instead of n + 1 for the original ciphertexts c1(~x) and c2(~x)

Relinearization [BV11]:

Publish polynomials pj,k,t(~x) = 2txjxk + Lj,k,t(~x)
with pj,k,t(~s) = 2ej,k,t mod q
remove the quadratic terms ajkxjxk by
subtraction, using a binary
decomposition of ajk .
Only linear terms remain, so ciphertext
size remains constant

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The BGV scheme: modulus switching [BGV11]

Modulus switching of c(~x) = 〈~c , (1, ~x)〉 mod q to modulo p

Let ~c ′ be the integer vector closest to p/q · ~c such that
~c ′ = ~c mod 2
Then [~c ′, ~s]p = [~c , ~s]q mod 2: decryption remains the same

and 〈~c ′, ~s 〉 ' (p/q) · 〈~c , ~s 〉: noise is reduced by a factor q/p.

Application: reducing noise growth. Assume p/q = 2−ρ.

ρ

q

2ρ

q

ρ

p

× p/q

Noise reduction without bootstrapping !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The BGV scheme: modulus switching [BGV11]

Modulus switching of c(~x) = 〈~c , (1, ~x)〉 mod q to modulo p

Let ~c ′ be the integer vector closest to p/q · ~c such that
~c ′ = ~c mod 2
Then [~c ′, ~s]p = [~c , ~s]q mod 2: decryption remains the same

and 〈~c ′, ~s 〉 ' (p/q) · 〈~c , ~s 〉: noise is reduced by a factor q/p.

Application: reducing noise growth. Assume p/q = 2−ρ.

ρ

q

2ρ

q

ρ

p

× p/q

Noise reduction without bootstrapping !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Leveled fully homomorphic encryption

Previous model: exponential growth of noise

ρ

q

2ρ

q

4ρ

q

8ρ

q

× × ×

Only bootstrapping can give FHE

New model: modulus switching after each multiplication layer

with a ladder of moduli pi such that pi+1/pi = 2−ρ

ρ

p1

2ρ

p1

ρ

p2

2ρ

p2

ρ

p3

2ρ

p3

ρ

p4

2ρ

p4
× S × S × S ×

Leveled FHE

Size of p1 linear in the circuit depth
Parameters depend on the depth
Can accommodate polynomial depth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Leveled fully homomorphic encryption

Previous model: exponential growth of noise

ρ

q

2ρ

q

4ρ

q

8ρ

q

× × ×

Only bootstrapping can give FHE

New model: modulus switching after each multiplication layer

with a ladder of moduli pi such that pi+1/pi = 2−ρ

ρ

p1

2ρ

p1

ρ

p2

2ρ

p2

ρ

p3

2ρ

p3

ρ

p4

2ρ

p4
× S × S × S ×

Leveled FHE

Size of p1 linear in the circuit depth
Parameters depend on the depth
Can accommodate polynomial depth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Leveled fully homomorphic encryption

Previous model: exponential growth of noise

ρ

q

2ρ

q

4ρ

q

8ρ

q

× × ×

Only bootstrapping can give FHE

New model: modulus switching after each multiplication layer

with a ladder of moduli pi such that pi+1/pi = 2−ρ

ρ

p1

2ρ

p1

ρ

p2

2ρ

p2

ρ

p3

2ρ

p3

ρ

p4

2ρ

p4
× S × S × S ×

Leveled FHE

Size of p1 linear in the circuit depth
Parameters depend on the depth
Can accommodate polynomial depth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

RLWE-based schemes

Regev’s scheme based on LWE

Secret-key: ~s ∈ (Zq)n

Public-key: fi (~x) such that fi (~s) = 2ei with ei � q

c(~x) = m +
τ∑

i=1

bi · fi (~x) for random bi ← {0, 1}

m = (c(~s) mod q) mod 2

RLWE-based scheme

We can replace Zq by the polynomial ring
Rq = Zq[x]/ < xk + 1 >, where k is a power of 2.
Addition and multiplication of polynomials are performed
modulo xk + 1 and prime q.
We can take n = 1.
We can take m ∈ R2 = Z2[x]/<xk + 1>
instead of {0, 1}: more bandwidth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

RLWE-based schemes

Regev’s scheme based on LWE

Secret-key: ~s ∈ (Zq)n

Public-key: fi (~x) such that fi (~s) = 2ei with ei � q

c(~x) = m +
τ∑

i=1

bi · fi (~x) for random bi ← {0, 1}

m = (c(~s) mod q) mod 2

RLWE-based scheme

We can replace Zq by the polynomial ring
Rq = Zq[x]/ < xk + 1 >, where k is a power of 2.
Addition and multiplication of polynomials are performed
modulo xk + 1 and prime q.
We can take n = 1.
We can take m ∈ R2 = Z2[x]/<xk + 1>
instead of {0, 1}: more bandwidth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Third generation of FHE: ciphertext matrices

Homomorphic encryption with matrices [GSW13]

Ciphertexts are square matrices instead of vectors
Homomorphism: δ(C , ~v) = µ where µ is eigenvalue for secret
eigenvector ~v
Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZN×N × ZN×N ZN×N

Plaintexts Z× Z Z

+,×

δ,δ δ

+,×

One must add some noise, otherwise
broken by linear algebra

C · ~v = µ · ~v + ~e (mod q)
for message µ ∈ Z, for some small
noise ~e.
Security based on LWE problem.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Third generation of FHE: ciphertext matrices

Homomorphic encryption with matrices [GSW13]

Ciphertexts are square matrices instead of vectors
Homomorphism: δ(C , ~v) = µ where µ is eigenvalue for secret
eigenvector ~v
Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZN×N × ZN×N ZN×N

Plaintexts Z× Z Z

+,×

δ,δ δ

+,×

One must add some noise, otherwise
broken by linear algebra

C · ~v = µ · ~v + ~e (mod q)
for message µ ∈ Z, for some small
noise ~e.
Security based on LWE problem.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext matrices: slow noise growth

Noise grow of ciphertext multiplication [GSW13]:

C1 · ~v = µ1 · ~v + ~e1 (mod q), C2 · ~v = µ2 · ~v + ~e2 (mod q)
(C1 · C2) · ~v = C1 · (µ2 · ~v + ~e2) = (µ2 · µ1) · ~v + ~e3

with ~e3 = µ2 · ~e1 + C1 · ~e2

Slow noise growth:

Ensure µi ∈ {0, 1}, using only NAND gates µ3 = 1− µ1 · µ2

Ciphertext flattening: ensure Ci ∈ {0, 1}N×N , using binary
decomposition and ~v = (s1, . . . , 2

`s1, . . . , sn, . . . , 2
`sn).

If ‖~e1‖∞ ≤ B and ‖~e2‖∞ ≤ B, ‖~e3‖∞ ≤ (N + 1) · B
Leveled FHE

At depth L, ‖~e‖∞ ≤ (N + 1)L · B
One can take q > 8 · B · (N + 1)L and
accommodate polynomial depth L.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext matrices: slow noise growth

Noise grow of ciphertext multiplication [GSW13]:

C1 · ~v = µ1 · ~v + ~e1 (mod q), C2 · ~v = µ2 · ~v + ~e2 (mod q)
(C1 · C2) · ~v = C1 · (µ2 · ~v + ~e2) = (µ2 · µ1) · ~v + ~e3

with ~e3 = µ2 · ~e1 + C1 · ~e2

Slow noise growth:

Ensure µi ∈ {0, 1}, using only NAND gates µ3 = 1− µ1 · µ2

Ciphertext flattening: ensure Ci ∈ {0, 1}N×N , using binary
decomposition and ~v = (s1, . . . , 2

`s1, . . . , sn, . . . , 2
`sn).

If ‖~e1‖∞ ≤ B and ‖~e2‖∞ ≤ B, ‖~e3‖∞ ≤ (N + 1) · B
Leveled FHE

At depth L, ‖~e‖∞ ≤ (N + 1)L · B
One can take q > 8 · B · (N + 1)L and
accommodate polynomial depth L.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext matrices: slow noise growth

Noise grow of ciphertext multiplication [GSW13]:

C1 · ~v = µ1 · ~v + ~e1 (mod q), C2 · ~v = µ2 · ~v + ~e2 (mod q)
(C1 · C2) · ~v = C1 · (µ2 · ~v + ~e2) = (µ2 · µ1) · ~v + ~e3

with ~e3 = µ2 · ~e1 + C1 · ~e2

Slow noise growth:

Ensure µi ∈ {0, 1}, using only NAND gates µ3 = 1− µ1 · µ2

Ciphertext flattening: ensure Ci ∈ {0, 1}N×N , using binary
decomposition and ~v = (s1, . . . , 2

`s1, . . . , sn, . . . , 2
`sn).

If ‖~e1‖∞ ≤ B and ‖~e2‖∞ ≤ B, ‖~e3‖∞ ≤ (N + 1) · B
Leveled FHE

At depth L, ‖~e‖∞ ≤ (N + 1)L · B
One can take q > 8 · B · (N + 1)L and
accommodate polynomial depth L.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fourth generation: homomorphic encryption for
approximate numbers

Homomorphic encryption for real numbers [CKKS17]

Floating point arithmetic, instead of exact arithmetic.
Starting point: Regev’s scheme.
Homomorphism: δ : Zq[~x]→ Zq given by evaluation at ~s

Ciphertexts Zq[~x]× Zq[~x] Zq[~x]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (~s) = m + e mod q, for small e ∈ Zq

Noise only affects the low-order bits of
m: approximate computation, as in
floating point arithmetic.
Application: neural networks.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fourth generation: homomorphic encryption for
approximate numbers

Homomorphic encryption for real numbers [CKKS17]

Floating point arithmetic, instead of exact arithmetic.
Starting point: Regev’s scheme.
Homomorphism: δ : Zq[~x]→ Zq given by evaluation at ~s

Ciphertexts Zq[~x]× Zq[~x] Zq[~x]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (~s) = m + e mod q, for small e ∈ Zq

Noise only affects the low-order bits of
m: approximate computation, as in
floating point arithmetic.
Application: neural networks.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

[CKKS17]: ciphertext multiplication and rescaling

Ciphertext multiplication c(~x) = c1(~x) · c2(~x)

c(~s) = (m1 + e1) · (m2 + e2) = m1m2 + e? (mod q)
with e? = m1e2 + e1m2 + e1e2.

Rescaling of ciphertext:

c ′(~x) = b~c(x)/pe (mod q/p)
Valid encryption of bm/pe with noise ' e/p
Similar to modulus switching

e1q

m1

e2q

m2

×

e?q

m1m2

e ′q/p

m1m2/p

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Conclusion

Main challenge: make FHE pratical !

New primitives
Libraries (HElib)
Compiler to homomorphic evaluation

Applications

Homomorphic machine learning: evaluate a neural network
without revealing the weights.
Genome-wide association studies: linear regression, logistic
regression.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

AP14 Jacob Alperin-Sheriff, Chris Peikert. Faster Bootstrapping
with Polynomial Error. IACR Cryptol. ePrint Arch. 2014: 94
(2014)

BGV11 Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. Fully
Homomorphic Encryption without Bootstrapping. Electron.
Colloquium Comput. Complex. 18: 111 (2011)

BV14 Zvika Brakerski, Vinod Vaikuntanathan. Lattice-based FHE as
secure as PKE. ITCS 2014: 1-12

CCK+13 Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon
Sung Lee, Tancrède Lepoint, Mehdi Tibouchi, Aaram Yun:
Batch Fully Homomorphic Encryption over the Integers.
EUROCRYPT 2013: 315-335

CKKS17 Jung Hee Cheon, Andrey Kim, Miran Kim, Yong Soo Song.
Homomorphic Encryption for Arithmetic of Approximate
Numbers. ASIACRYPT (1) 2017: 409-437

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

CN12 Yuanmi Chen, Phong Q. Nguyen. Faster Algorithms for
Approximate Common Divisors: Breaking
Fully-Homomorphic-Encryption Challenges over the Integers.
EUROCRYPT 2012: 502-519

CMNT11 Jean-Sébastien Coron, Avradip Mandal, David Naccache,
Mehdi Tibouchi: Fully Homomorphic Encryption over the
Integers with Shorter Public Keys. CRYPTO 2011: 487-504

CNT12 Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi.
Public Key Compression and Modulus Switching for Fully
Homomorphic Encryption over the Integers. EUROCRYPT
2012: 446-464

DGHV10 Marten van Dijk, Craig Gentry, Shai Halevi, Vinod
Vaikuntanathan. Fully Homomorphic Encryption over the
Integers. EUROCRYPT 2010: 24-43

Gen09 Craig Gentry. Fully homomorphic encryption using ideal
lattices. STOC 2009: 169-178

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

GH11 Craig Gentry, Shai Halevi. Implementing Gentry’s
Fully-Homomorphic Encryption Scheme. EUROCRYPT 2011:
129-148

GSW13 Craig Gentry, Amit Sahai, Brent Waters. Homomorphic
Encryption from Learning with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-Based. CRYPTO (1) 2013:
75-92

P99 Pascal Paillier. Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes. EUROCRYPT 1999:
223-238

R05 Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. STOC 2005: 84-93

SV10 Nigel P. Smart, Frederik Vercauteren. Fully Homomorphic
Encryption with Relatively Small Key and Ciphertext Sizes.
Public Key Cryptography 2010: 420-443

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

