Introduction to Fully Homomorphic Encryption

Jean-Sébastien Coron
University of Luxembourg

Overview

- What is Fully Homomorphic Encryption (FHE) ?
- Basic properties
- Cloud computing on encrypted data: the server should process the data without learning the data.

- 4 generations of FHE:
- 1st oen: [Gen09], [DGHV10]: bootstrapping, slow
- 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear construction (modulus switching)
- 3rd gen: [GSW13]: no modulus
switching, slow noise growth
- 4th gen: [CKKS17]: approximate
computation

Overview

- What is Fully Homomorphic Encryption (FHE) ?
- Basic properties
- Cloud computing on encrypted data: the server should process the data without learning the data.

- 4 generations of FHE:
- 1st gen: [Gen09], [DGHV10]: bootstrapping, slow
- 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear construction (modulus switching).
- 3rd gen: [GSW13]: no modulus switching, slow noise growth
- 4th gen: [CKKS17]: approximate computation

Overview

- What is Fully Homomorphic Encryption (FHE) ?
- Basic properties
- Cloud computing on encrypted data: the server should process the data without learning the data.

- 4 generations of FHE:
- 1st gen: [Gen09], [DGHV10]: bootstrapping, slow
- 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear construction (modulus switching).
- 3rd gen: [GSW13]: no modulus switching, slow noise growth
- 4th gen: [CKKS17]: approximate computation

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
- Normally, this is not possible.

$$
\begin{array}{ll}
\mathrm{AES}_{K}\left(m_{1}\right) & =0 \times 3 \mathrm{c} 7317 \mathrm{c} 6 \mathrm{bc} 5634 \mathrm{a} 4 \mathrm{ad} 8479 \mathrm{c} 64714 \mathrm{f} 4 \mathrm{f} 8 \\
\mathrm{AES}_{K}\left(m_{2}\right) & =0 \mathrm{x} 7619884 \mathrm{e} 1961 \mathrm{~b} 051 \mathrm{be} 1 \mathrm{aa} 407 \mathrm{da} 6 \mathrm{cac} 2 \mathrm{c} \\
\mathrm{AES}_{K}\left(m_{1} \oplus m_{2}\right) & =?
\end{array}
$$

- For some cryptosystems with algebraic structure, this is possible. For example RSA:
$c_{1}=m_{1}{ }^{e} \bmod N$

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
- Normally, this is not possible.

$$
\begin{array}{ll}
\mathrm{AES}_{K}\left(m_{1}\right) & =0 \times 3 \mathrm{c} 7317 \mathrm{c} 6 \mathrm{bc} 5634 \mathrm{a} 4 \mathrm{ad} 8479 \mathrm{c} 64714 \mathrm{f} 4 \mathrm{f} 8 \\
\mathrm{AES}_{K}\left(m_{2}\right) & =0 \mathrm{x} 7619884 \mathrm{e} 1961 \mathrm{~b} 051 \mathrm{be} 1 \mathrm{aa} 407 \mathrm{da6cac} 2 \mathrm{c} \\
\mathrm{AES}_{K}\left(m_{1} \oplus m_{2}\right) & =?
\end{array}
$$

- For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

Homomorphic Encryption with RSA

- Multiplicative property of RSA.

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c=c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

- Homomorphic encryption: given c_{1} and c_{2}, we can compute the ciphertext c for $m_{1} \cdot m_{2} \bmod N$
- using only the public-key
- without knowing the plaintexts m_{1} and m_{2}.

Homomorphism of RSA

- RSA homomorphism: decryption function $\delta(x)=x^{d} \bmod N$

$$
\delta\left(c_{1} \times c_{2}\right)=\delta\left(c_{1}\right) \times \delta\left(c_{2}\right) \quad(\bmod N)
$$

Ciphertexts

$$
\begin{gathered}
\mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z} \xrightarrow{\times} \mathbb{Z} / N \mathbb{Z} \\
\\
\downarrow \begin{array}{lll}
\downarrow, \delta & & \downarrow^{\delta} \\
\mathbb{Z} / N \mathbb{Z} & \times \mathbb{Z} / N \mathbb{Z} & \times \\
\mathbb{Z} / N \mathbb{Z}
\end{array}
\end{gathered}
$$

Plaintexts

Paillier Cryptosystem

- Additively homomorphic: Paillier cryptosystem [P99]

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

Ciphertexts

Plaintexts

$$
\begin{gathered}
\mathbb{Z} / N^{2} \mathbb{Z} \times \mathbb{Z} / N^{2} \mathbb{Z} \xrightarrow{\times} \mathbb{Z} / N^{2} \mathbb{Z} \\
\left.\qquad \begin{array}{l}
\delta, \delta \\
\mathbb{Z} / N \mathbb{Z}
\end{array}\right) \mathbb{Z} / N \mathbb{Z} \xrightarrow{+} \mathbb{Z} / N \mathbb{Z}
\end{gathered}
$$

Application of Paillier Cryptosystem

- Additively homomorphic: Paillier cryptosystem

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

- Application: e-voting.
- Voter i encrypts his vote $m_{i} \in\{0,1\}$ into:

$$
c_{i}=g^{m_{i}} \cdot z_{i}^{N} \bmod N^{2}
$$

- Votes can be aggregated using only the public-key:

$$
c=\prod_{i} c_{i}=g^{\sum_{i} m_{i}} \cdot z \bmod N^{2}
$$

- c is eventually decrypted to recover

$$
m=\sum_{i} m_{i}
$$

- Multiplicatively homomorphic: RSA.

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

- Additively homomorphic: Paillier

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

- Fully homomorphic: homomorphic for both addition and multiplication
- Open problem until Gentry's breakthrough in 2009.

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
$-0 \xrightarrow{E_{\rho k}}$ 203ef6124 $\ldots 23 \mathrm{ab} 87_{16}, 1 \xrightarrow{E_{\rho k}}$ b327653c1 ...db3265 ${ }_{16}$
- Encryption must be probabilistic.
- Fully homomorphic property
- Given $E_{p k}(x)$ and $E_{p k}(y)$, one can compute $E_{p k}(x \oplus y)$ and $E_{p k}(x \cdot y)$ without knowing the private-key.
- We restrict ourselves to public-key encryption of a single bit:
- $0 \xrightarrow{E_{\rho k}}$ 203ef6124 $\ldots 23 \mathrm{ab} 87_{16}, 1 \xrightarrow{E_{\rho k}}$ b327653c1 ...db3265 ${ }_{16}$
- Encryption must be probabilistic.
- Fully homomorphic property
- Given $E_{p k}(x)$ and $E_{p k}(y)$, one can compute $E_{p k}(x \oplus y)$ and $E_{p k}(x \cdot y)$ without knowing the private-key.

Evaluation of any function

- Universality
- We can evaluate homomorphically any boolean computable function $f:\{0,1\}^{n} \rightarrow\{0,1\}$

$E_{p k}\left(x_{1}\right) \quad E_{p k}\left(x_{2}\right) \quad E_{p k}\left(x_{3}\right) \quad E_{p k}\left(x_{4}\right) \quad E_{p k}\left(x_{5}\right)$

Ciphertext world

Outsourcing computation (1)

- Alice wants to outsource the computation of $f(x)$
- but she wants to keep x private
- She encrypts the bits x_{i} of x into $c_{i}=E_{p k}\left(x_{i}\right)$ for her pk
- and she sends the c_{i} 's to the server

Outsourcing computation (1)

$$
c_{i}=E_{p k}\left(x_{i}\right)
$$

- Alice wants to outsource the computation of $f(x)$
- but she wants to keep x private
- She encrypts the bits x_{i} of x into $c_{i}=E_{p k}\left(x_{i}\right)$ for her $p k$
- and she sends the c_{i} 's to the server

Outsourcing computation (2)

$$
c_{i}=E_{p k}\left(x_{i}\right)
$$

- The server homomorphically evaluates $f(x)$
- by writing $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ as a boolean circuit.
- Given $E_{p k}\left(x_{i}\right)$, the server eventually obtains $c=E_{p k}(f(x))$
- Finally Alice decrypts c into $y=f(x)$
- The server does not learn x.
- Only Alice can decrypt to recover $f(x)$.
- Alice could also keep f private.

Outsourcing computation (2)

$$
\begin{gathered}
c_{i}=E_{p k}\left(x_{i}\right) \\
c=E_{p k}(f(x))
\end{gathered}
$$

- The server homomorphically evaluates $f(x)$
- by writing $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ as a boolean circuit.
- Given $E_{p k}\left(x_{i}\right)$, the server eventually obtains $c=E_{p k}(f(x))$
- Finally Alice decrypts c into $y=f(x)$
- The server does not learn x.
- Only Alice can decrypt to recover $f(x)$.
- Alice could also keep f private.

Outsourcing computation (2)

$$
\begin{aligned}
& c_{i}=E_{p k}\left(x_{i}\right) \\
& c=E_{p k}(f(x))
\end{aligned}
$$

$$
y=D_{s k}(c)=f(x)
$$

- The server homomorphically evaluates $f(x)$
- by writing $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ as a boolean circuit.
- Given $E_{p k}\left(x_{i}\right)$, the server eventually obtains $c=E_{p k}(f(x))$
- Finally Alice decrypts c into $y=f(x)$
- The server does not learn x.
- Only Alice can decrypt to recover $f(x)$.
- Alice could also keep f private.
- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
- Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

Fully Homomorphic Encryption: first generation

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
- Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
- Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
- Public-key compression [CNT12]
- Batch and homomorphic evaluation of AES [CCKLLTY13].
- Ciphertext for $m \in\{0,1\}$:

$$
c=q \cdot p+2 r+m
$$

where p is the secret-key, q and r are randoms.

- Decryption:

$$
(c \bmod p) \bmod 2=m
$$

- Parameters:

Homomorphic Properties of DGHV

- Addition:

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1}+c_{2}=q^{\prime} \cdot p+2 r^{\prime}+m_{1}+m_{2}
$$

- $c_{1}+c_{2}$ is an encryption of $m_{1}+m_{2} \bmod 2=m_{1} \oplus m_{2}$
- Multiplication:
$c_{1}=q_{1} \cdot p+2 r_{1}+m_{1}$
$c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}$

with

$$
r^{\prime \prime}=2 r_{1} r_{2}+r_{1} m_{2}+r_{2} m_{1}
$$

- $c_{1} \cdot c_{2}$ is an encryption of $m_{1} \cdot m_{2}$
- Noise becomes twice larger.

Homomorphic Properties of DGHV

- Addition:

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2} \\
& \bullet c_{1}+c_{2} \text { is an encryption of } m_{1}+m_{2} \bmod 2=c_{1}=q^{\prime} \cdot p+2 r^{\prime}+m_{1}+m_{2} \\
&
\end{aligned}
$$

- Multiplication:

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=q^{\prime \prime} \cdot p+2 r^{\prime \prime}+m_{1} \cdot m_{2}
$$

with

$$
r^{\prime \prime}=2 r_{1} r_{2}+r_{1} m_{2}+r_{2} m_{1}
$$

- $c_{1} \cdot c_{2}$ is an encryption of $m_{1} \cdot m_{2}$
- Noise becomes twice larger.

Homomorphism of DGHV

- DGHV ciphertext:

$$
c=q \cdot p+2 r+m
$$

- Homomorphism: $\delta(x)=(x \bmod p) \bmod 2$
- only works if noise r is smaller than p

Ciphertexts

Plaintexts

Somewhat homomorphic scheme

- The number of multiplications is limited.
- Noise grows with the number of multiplications.
- Noise must remain $<p$ for correct decryption.

Public-key Encryption with DGHV

- For now, encryption requires the knowledge of the secret p :

$$
c=q \cdot p+2 r+m
$$

- We can actually turn it into a public-key encryption scheme - Using the additively homomorphic property - Public-key: a set of τ encryptions of 0's.

- Public-key encryption:

for random $\varepsilon_{i} \in\{0,1\}$
- For now, encryption requires the knowledge of the secret p :

$$
c=q \cdot p+2 r+m
$$

- We can actually turn it into a public-key encryption scheme
- Using the additively homomorphic property
- Public-key: a set of τ encryptions of 0 's.

$$
x_{i}=q_{i} \cdot p+2 r_{i}
$$

- Public-key encryption:

$$
c=m+2 r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot x_{i}
$$

for random $\varepsilon_{i} \in\{0,1\}$.

Bounding ciphertext size

- DGHV multiplication over \mathbb{Z}

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=q^{\prime} \cdot p+2 r^{\prime}+m_{1} \cdot m_{2}
$$

- Problem: ciphertext size has doubled.
- Constant ciphertext size
- We publish an encryption of 0 without noise $x_{0}=q_{0} \cdot p$
- We reduce the product modulo x_{0}

$$
\begin{aligned}
c_{3} & =c_{1} \cdot c_{2} \bmod x_{0} \\
& =q^{\prime \prime} \cdot p+2 r^{\prime}+m_{1} \cdot m_{2}
\end{aligned}
$$

- Ciphertext size remains constant

Public-key size

- Public-key size:
- $\tau \cdot \gamma=2 \cdot 10^{11}$ bits $=25 \mathrm{~GB}$!

DGHV Ciphertext Compression

- Ciphertext: $c=q \cdot p+2 r+m$

- Compute a pseudo-random $\chi=f($ seed $)$ of γ bits.

DGHV Ciphertext Compression

- Ciphertext: $c=q \cdot p+2 r+m$

$$
c=\square \| \xrightarrow{\gamma \simeq 2 \cdot 10^{7} \text { bits }}
$$

- Compute a pseudo-random $\chi=f($ seed $)$ of γ bits.

$$
\begin{array}{c|}
\chi=\square \| \square \\
\delta=\chi-2 r-m \bmod p \\
c=\chi-\delta \square \\
\\
c= \\
\hline
\end{array}
$$

- Only store seed and the small correction δ.
- Storage: $\simeq 2700$ bits instead of

2. 10^{7} bits !

DGHV Ciphertext Compression

- Ciphertext: $c=q \cdot p+2 r+m$

$$
c=\square \| \xrightarrow{\gamma \simeq 2 \cdot 10^{7} \text { bits }}
$$

- Compute a pseudo-random $\chi=f($ seed $)$ of γ bits.

$$
\begin{array}{c|}
\chi=\square \| \square \\
\delta=\chi-2 r-m \bmod p \\
c=\chi-\delta \square \\
\hline
\end{array}
$$

- Only store seed and the small correction δ.

DGHV Ciphertext Compression

- Ciphertext: $c=q \cdot p+2 r+m$

$$
c=\square \| \xrightarrow{\gamma \simeq 2 \cdot 10^{7} \text { bits }}
$$

- Compute a pseudo-random $\chi=f($ seed $)$ of γ bits.

$$
\begin{array}{c|}
\chi=\square \| \square \\
\delta=\chi-2 r-m \bmod p \\
c=\chi-\delta \square \\
\hline
\end{array}
$$

- Only store seed and the small correction δ.
- Storage: $\simeq 2700$ bits instead of $2 \cdot 10^{7}$ bits !

Compressed Public Key

Old pk: 25 GB

New pk: 3.4 MB!

Semantic security of DGHV

- Semantic security [GM82] for $m \in\{0,1\}$:
- Knowing $p k$, the distributions $E_{p k}(0)$ and $E_{p k}(1)$ are computationally hard to distinguish.
- The DGHV scheme is semantically secure, under the approximate-gcd assumption.
- Approximate-gcd problem: given a set of $x_{i}=q_{i} \cdot p+r_{i}$, recover p.
- This remains the case with the compressed public-key, under the random oracle model.

The approximate GCD assumption

- Efficient DGHV variant: secure under the Partial Approximate Common Divisor (PACD) assumption.
- Given $x_{0}=p \cdot q_{0}$ and polynomially many $x_{i}=p \cdot q_{i}+r_{i}$, find p.
- Brute force attack on the noise
- Given $x_{0}=q_{0} \cdot p$ and $x_{1}=q_{1} \cdot p+r_{1}$ with $\left|r_{1}\right|<2^{\rho}$, guess r_{1} and compute $\operatorname{gcd}\left(x_{0}, x_{1}-r_{1}\right)$ to recover p.
- Requires 2^{ρ} gcd computation
- Countermeasure: take a sufficiently large ρ

Improved attack against PACD [CN12]

- Given $x_{0}=p \cdot q_{0}$ and many $x_{i}=p \cdot q_{i}+r_{i}$, find p.
- Improved attack in $\tilde{\mathcal{O}}\left(2^{\rho / 2}\right)$ [CN12]

$$
\begin{aligned}
& p=\operatorname{gcd}\left(x_{0}, \prod_{i=0}^{2^{\rho}-1}\left(x_{1}-i\right) \bmod x_{0}\right) \\
&=\operatorname{gcd}\left(x_{0}, \prod_{a=0}^{m-1} \prod_{b=0}^{m-1}\left(x_{1}-b-m \cdot a\right) \bmod x_{0}\right), \text { where } m=2^{\rho / 2} \\
&=\operatorname{gcd}\left(x_{0}, \prod_{a=0}^{m-1} f(a) \bmod x_{0}\right) \\
& \text { - } f(y):=\prod_{b=0}^{m-1}\left(x_{1}-b-m \cdot y\right) \bmod x_{0}
\end{aligned}
$$

- Evaluate the polynomial $f(y)$ at m points in time $\tilde{\mathcal{O}}(m)=\tilde{\mathcal{O}}\left(2^{\rho / 2}\right)$

Approximate GCD attack

- Consider t integers: $x_{i}=p \cdot q_{i}+r_{i}$ and $x_{0}=p \cdot q_{0}$.
- Consider a vector \vec{u} orthogonal to the x_{i} 's:

$$
\sum_{i=1}^{t} u_{i} \cdot x_{i}=0 \quad \bmod x_{0}
$$

- This gives $\sum_{i=1}^{t} u_{i} \cdot r_{i}=0 \bmod p$.
- If the u_{i} 's are sufficiently small, since the r_{i} 's are small this equality will hold over \mathbb{Z}.
- Such vector \vec{u} can be found using LLL.
- By collecting many orthogonal vectors one can recover \vec{r} and eventually the secret key p
- Countermeasure
- The size γ of the x_{i} 's must be sufficiently large.

The DGHV scheme (simplified)

- Key generation:
- Generate a set of τ public integers:

$$
x_{i}=p \cdot q_{i}+r_{i}, \quad 1 \leq i \leq \tau
$$

and $x_{0}=p \cdot q_{0}$, where p is a secret prime.

- Size of p is η. Size of x_{i} is γ. Size of r_{i} is ρ.
- Encryption of a message $m \in\{0,1\}$
- Generate random $\varepsilon_{i} \leftarrow\{0,1\}$ and a random integer r in $\left(-2^{\rho}, 2^{\rho}\right)$, and output the ciphertext:

- Decryption:

The DGHV scheme (simplified)

- Key generation:
- Generate a set of τ public integers:

$$
x_{i}=p \cdot q_{i}+r_{i}, \quad 1 \leq i \leq \tau
$$

and $x_{0}=p \cdot q_{0}$, where p is a secret prime.

- Size of p is η. Size of x_{i} is γ. Size of r_{i} is ρ.
- Encryption of a message $m \in\{0,1\}$:
- Generate random $\varepsilon_{i} \leftarrow\{0,1\}$ and a random integer r in $\left(-2^{\rho^{\prime}}, 2^{\rho^{\prime}}\right)$, and output the ciphertext:

$$
c=m+2 r+2 \sum_{i=1}^{\tau} \varepsilon_{i} \cdot x_{i} \bmod x_{0}
$$

- Decryption:

The DGHV scheme (simplified)

- Key generation:
- Generate a set of τ public integers:

$$
x_{i}=p \cdot q_{i}+r_{i}, \quad 1 \leq i \leq \tau
$$

and $x_{0}=p \cdot q_{0}$, where p is a secret prime.

- Size of p is η. Size of x_{i} is γ. Size of r_{i} is ρ.
- Encryption of a message $m \in\{0,1\}$:
- Generate random $\varepsilon_{i} \leftarrow\{0,1\}$ and a random integer r in $\left(-2^{\rho^{\prime}}, 2^{\rho^{\prime}}\right)$, and output the ciphertext:

$$
c=m+2 r+2 \sum_{i=1}^{\tau} \varepsilon_{i} \cdot x_{i} \bmod x_{0}
$$

- Decryption:

$$
c \equiv m+2 r+2 \sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i} \quad(\bmod p)
$$

- Output $m \leftarrow(c \bmod p) \bmod 2$

The DGHV scheme (contd.)

- Noise in ciphertext:
- $c=m+2 \cdot r^{\prime} \bmod p$ where $r^{\prime}=r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i}$
- r^{\prime} is the noise in the ciphertext.
- It must remain $<p$ for correct decryption.
- Homomorphic addition: $c_{3} \leftarrow c_{1}+c_{2} \bmod x_{0}$
- $c_{1}+c_{2}=m_{1}+m_{2}+2\left(r_{1}^{\prime}+r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime}+r_{2}^{\prime}$ still less than p.
- Homomorphic multiplication: $c_{3} \leftarrow c_{1} \cdot c_{2} \bmod x_{0}$
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(m_{1} \cdot r_{2}^{\prime}+m_{2} \cdot r_{1}^{\prime}+2 r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime} \cdot r_{2}^{\prime}$ remains less than p.
- Somewhat homomorphic scheme
- Noise grows with every homomorphic
addition or multiplication.
- This limits the degree of the polynomial
that can be applied on ciphertexts.

The DGHV scheme (contd.)

- Noise in ciphertext:
- $c=m+2 \cdot r^{\prime} \bmod p$ where $r^{\prime}=r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i}$
- r^{\prime} is the noise in the ciphertext.
- It must remain $<p$ for correct decryption.
- Homomorphic addition: $c_{3} \leftarrow c_{1}+c_{2} \bmod x_{0}$
- $c_{1}+c_{2}=m_{1}+m_{2}+2\left(r_{1}^{\prime}+r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime}+r_{2}^{\prime}$ still less than p.
- Homomorphic multiplication: $c_{3} \leftarrow c_{1} \cdot c_{2} \bmod x_{0}$
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(m_{1} \cdot r_{2}^{\prime}+m_{2} \cdot r_{1}^{\prime}+2 r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime} \cdot r_{2}^{\prime}$ remains less than p.
- Somewhat homomorphic scheme
- Noise grows with every homomorphic
addition or multiplication.
- This limits the degree of the polynomial
that can be applied on ciphertexts.

The DGHV scheme (contd.)

- Noise in ciphertext:
- $c=m+2 \cdot r^{\prime} \bmod p$ where $r^{\prime}=r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i}$
- r^{\prime} is the noise in the ciphertext.
- It must remain $<p$ for correct decryption.
- Homomorphic addition: $c_{3} \leftarrow c_{1}+c_{2} \bmod x_{0}$
- $c_{1}+c_{2}=m_{1}+m_{2}+2\left(r_{1}^{\prime}+r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime}+r_{2}^{\prime}$ still less than p.
- Homomorphic multiplication: $c_{3} \leftarrow c_{1} \cdot c_{2} \bmod x_{0}$
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(m_{1} \cdot r_{2}^{\prime}+m_{2} \cdot r_{1}^{\prime}+2 r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime} \cdot r_{2}^{\prime}$ remains less than p.
- Somewhat homomorphic scheme
- Noise grows with every homomorphic
addition or multiplication.
- This limits the degree of the polynomial
that can be applied on ciphertexts.

The DGHV scheme (contd.)

- Noise in ciphertext:
- $c=m+2 \cdot r^{\prime} \bmod p$ where $r^{\prime}=r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i}$
- r^{\prime} is the noise in the ciphertext.
- It must remain $<p$ for correct decryption.
- Homomorphic addition: $c_{3} \leftarrow c_{1}+c_{2} \bmod x_{0}$
- $c_{1}+c_{2}=m_{1}+m_{2}+2\left(r_{1}^{\prime}+r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime}+r_{2}^{\prime}$ still less than p.
- Homomorphic multiplication: $c_{3} \leftarrow c_{1} \cdot c_{2} \bmod x_{0}$
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(m_{1} \cdot r_{2}^{\prime}+m_{2} \cdot r_{1}^{\prime}+2 r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime} \cdot r_{2}^{\prime}$ remains less than p.
- Somewhat homomorphic scheme
- Noise grows with every homomorphic addition or multiplication.
- This limits the degree of the polynomial that can be applied on ciphertexts.

Gentry's technique to get fully homomorphic encryption

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
- Only a polynomial f of small degree can computed homomorphically, for $\mathcal{F}=\left\{f\left(b_{1}, \ldots, b_{t}\right): \operatorname{deg} f \leq d\right\}$
- $V_{p k}\left(f, E_{p k}\left(b_{1}\right), \ldots, E_{p k}\left(b_{t}\right)\right) \rightarrow E_{p k}\left(f\left(b_{1}, \ldots, b_{t}\right)\right)$

Ciphertexts

$$
\mathcal{C}^{t} \xrightarrow{V_{p k}(f, \cdots)} \mathcal{C}
$$

$$
\downarrow_{s k}(\cdots) \quad \downarrow^{D_{s k}(\cdot)} \quad f \in \mathcal{F}
$$

Plaintexts

$$
\left(\mathbb{Z}_{2}\right)^{t} \xrightarrow{f} \mathbb{Z}_{2}
$$

Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
- Evaluate the decryption polynomial not on the bits of the ciphertext c and the secret key $s k$, but homomorphically on the encryption of those bits.

Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
- Instead of recovering the bit plaintext m, one gets an encryption of this bit plaintext, i.e. yet another ciphertext for the same plaintext.

Bootstrapping

- Evaluating the decryption function homomorphically
- with $f=D_{s k}(\cdot)$
- We obtain a new ciphertext C^{\star} with possibly less noise

Ciphertexts

$$
\mathcal{C}^{t} \xrightarrow{V_{p k}(f, \cdots)} \mathcal{C}
$$

$$
\downarrow_{\text {sk }}(\cdots) \quad \downarrow_{s k}(\cdot) \quad f \in \mathcal{F}
$$

Plaintexts

$$
\left(\mathbb{Z}_{2}\right)^{t} \xrightarrow{f} \mathbb{Z}_{2}
$$

Bootstrapping

- Evaluating the decryption function homomorphically
- with $f=D_{s k}(\cdot)$
- We obtain a new ciphertext C^{\star} with possibly less noise

$$
\left(E_{p k}\left(c_{1}\right), \ldots, E_{p k}\left(c_{t}\right)\right) \quad C^{\star}
$$

Ciphertexts

$$
\mathcal{C}^{t} \xrightarrow{V_{p k}(f, \cdots)} \mathcal{C}
$$

$$
\downarrow D_{s k}(\cdots) \quad \downarrow D_{s k}(\cdot) \quad \quad f \in \mathcal{F}
$$

Plaintexts

$$
\left(\mathbb{Z}_{2}\right)^{t} \xrightarrow{f} \mathbb{Z}_{2}
$$

$$
C=\left(c_{1}, \ldots, c_{t}\right) \quad m
$$

Bootstrapping (2)

- Evaluating the decryption function homomorphically
- Actually we use $f=D(\cdot, \cdot)$
- Using public $\left(E_{p k}\left(s k_{1}\right), \ldots, E_{p k}\left(s k_{t}\right)\right)$
- We obtain a new ciphertext C^{\star} with possibly less noise

Ciphertexts $\mathcal{C}^{2 t} \xrightarrow{V_{p k}(f, \cdots)} \mathcal{C}$

$f \in \mathcal{F}$

Plaintexts

Bootstrapping (2)

- Evaluating the decryption function homomorphically
- Actually we use $f=D(\cdot, \cdot)$
- Using public $\left(E_{p k}\left(s k_{1}\right), \ldots, E_{p k}\left(s k_{t}\right)\right)$
- We obtain a new ciphertext C^{\star} with possibly less noise

$$
\begin{aligned}
& \left(E_{p k}\left(s k_{1}\right), \ldots, E_{p k}\left(s k_{t}\right)\right) \\
& \left(E_{p k}\left(c_{1}\right), \ldots, E_{p k}\left(c_{t}\right)\right)
\end{aligned}
$$

Ciphertexts

$$
\mathcal{C}^{2 t} \xrightarrow{V_{p k}(f, \cdots)} \mathcal{C}
$$

$$
f \in \mathcal{F}
$$

Plaintexts

$$
\begin{aligned}
S K & =\left(s k_{1}, \ldots, s k_{t}\right) \\
C & =\left(c_{1}, \ldots, c_{t}\right)
\end{aligned}
$$

Squashing the decryption procedure

- Evaluating the decryption function homomorphically
- We use $f=D(\cdot, \cdot)$.
- We must have $f \in \mathcal{F}: f$ must be a low-degree polynomial in the inputs
- !!! This is not the case with $D(p, c)=(c \bmod p) \bmod 2$
- express the decryption function as a low degree polynomial in the bits of the ciphertext c and the secret key sk (equivalently a boolean circuit of small depth)

Ciphertexts

Plaintexts
$\mathcal{C}^{2 t} \xrightarrow{V_{p k}(f, \cdots)} \mathcal{C}$

Squashing the decryption procedure

- Evaluating the decryption function homomorphically
- We use $f=D(\cdot, \cdot)$.
- We must have $f \in \mathcal{F}: f$ must be a low-degree polynomial in the inputs
- !!! This is not the case with $D(p, c)=(c \bmod p) \bmod 2$
- "Squash" the decryption procedure:
- express the decryption function as a low degree polynomial in the bits of the ciphertext c and the secret key sk (equivalently a boolean circuit of small depth).

Ciphertexts

Plaintexts

Ciphertext refresh

- Refreshed ciphertext:
- If the degree of the decryption polynomial $D(\cdot, \cdot)$ is small enough, the resulting noise in the new ciphertext can be smaller than in the original ciphertext.

C

Fully homomorphic encryption

- Fully homomorphic encryption
- Using this "ciphertext refresh" procedure, the number of homomorphic operations becomes unlimited
- We get a fully homomorphic encryption scheme.

- The basic decryption $m \leftarrow(c \bmod p) \bmod 2$ cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c=q \cdot p+2 r+m$ - We have $q=\lfloor c / p\rceil$ and $c=q+m(\bmod 2)$ - Therefore
- Idea (Gentry, DGHV). Secret-share $1 / p$ as a sparse subset sum:

- The basic decryption $m \leftarrow(c \bmod p) \bmod 2$ cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c=q \cdot p+2 r+m$
- We have $q=\lfloor c / p\rceil$ and $c=q+m(\bmod 2)$
- Therefore

$$
m \leftarrow[c]_{2} \oplus[\lfloor c \cdot(1 / p)]]_{2}
$$

- Idea (Gentry, DGHV). Secret-share $1 / p$ as a sparse subset sum:

- The basic decryption $m \leftarrow(c \bmod p) \bmod 2$ cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c=q \cdot p+2 r+m$
- We have $q=\lfloor c / p\rceil$ and $c=q+m(\bmod 2)$
- Therefore

$$
m \leftarrow[c]_{2} \oplus[\lfloor c \cdot(1 / p)]]_{2}
$$

- Idea (Gentry, DGHV). Secret-share $1 / p$ as a sparse subset sum:

$$
1 / p=\sum_{i=1}^{\Theta} s_{i} \cdot y_{i}+\varepsilon
$$

Squashed decryption

- Alternative equation

$$
m \leftarrow[c]_{2} \oplus[\lfloor c \cdot(1 / p)]]_{2}
$$

- Secret-share $1 / p$ as a sparse subset sum:

$$
1 / p=\sum_{i=1}^{\Theta} s_{i} \cdot y_{i}+\varepsilon
$$

with random public y_{i} with precision $2^{-\kappa}$, and sparse secret $s_{i} \in\{0,1\}$.

- Decryption becomes:

$$
m \leftarrow[c]_{2} \oplus\left[\left|\sum_{i=1}^{\Theta} s_{i} \cdot\left(y_{i} \cdot c\right)\right|\right]_{2}
$$

Squashed decryption

- Alternative decryption equation:

$$
m \leftarrow[c]_{2} \oplus\left[\left|\sum_{i=1}^{\Theta} s_{i} \cdot z_{i}\right|\right]_{2}
$$

where $z_{i}=y_{i} \cdot c$ for public y_{i} 's

- Since s_{i} is sparse with $H\left(s_{i}\right)=\theta$, only $n=\left\lceil\log _{2}(\theta+1)\right\rceil$ bits of precision for $z_{i}=y_{i} \cdot c$ is required
- With $\theta=15$, only $n=4$ bits of precision for $z_{i}=y_{i} \cdot c$
- The decryption function can then be expressed as a polynomial of low degree (30) in the s_{i} 's.
- We must compute: $m \leftarrow[c]_{2} \oplus\left[\left\lfloor\sum_{i=i}^{\Theta} s_{i} \cdot z_{i}\right\rceil\right]_{2}$
- Trick from Gentry-Halevi:
- Split the Θ secret key bits into θ boxes of size $B=\Theta / \theta$ each.
- Then only one secret key bit inside every box is equal to one
- New decryption formula: $m \leftarrow[c]_{2} \oplus\left[\left\lfloor\sum_{k=1}^{\theta}\left(\sum_{i=1}^{B} s_{k, i} z_{k, i}\right) \mid\right]_{2}\right.$
- The sum $q_{k} \stackrel{\text { def }}{=} \sum_{i=1}^{B} s_{k, i} z_{k, i}$ is obtained by adding B numbers, only one being non-zero.
- To compute the j-th bit of q_{k} it suffices to xor all the j-th bits of the numbers $s_{k, i} \cdot z_{k, i}$.

The decryption circuit

Grade School addition

- The decryption equation is now:

$$
m \leftarrow[c]_{2} \oplus\left[\left\lfloor\sum_{k=1}^{\theta} q_{k}\right\rceil\right]_{2}
$$

- where the q_{k} 's are rational in $[0,2)$ with n bits of precision after the binary point.

Gentry's Bootstrapping

- The decryption circuit
- Can now be expressed as a polynomial of small degree d in the secret-key bits s_{i}, given the $z_{i}=c \cdot y_{i}$.

$$
m=C_{z_{i}}\left(s_{1}, \ldots, s_{\Theta}\right)
$$

- To refresh a ciphertext:
- Publish an encryption of the secret-key bits $\sigma_{i}=E_{p k}\left(s_{i}\right)$
- Homomorphically evaluate $m=C_{z_{i}}\left(s_{1}, \ldots, s_{\Theta}\right)$, using the encryptions $\sigma_{i}=E_{p k}\left(s_{i}\right)$
- We get $E_{p k}(m)$, that is a new ciphertext but possibly with less noise (a "recryption").
- The new noise has size $\simeq d \cdot \rho$ and is independent of the initial noise.

Four generations of FHE

- First generation: bootstrapping, slow
- Breakthrough scheme of Gentry [G09], based on ideal lattices.
- FHE over the integers: [DGHV10]
- Second generation: [BV11], [BGV11]
- More efficient, (R)LWE based. Relinearization, depth-linear construction with modulus switching.
- Third generation [GSW13]
- No modulus switching, slow noise growth
- Improved bootstrapping: [BV14], [AP14]
- Fourth gen: [CKKS17]
- Approximate floating point arithmetic

Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
- Homomorphism: $\delta: \mathbb{Z}_{q}[\vec{x}] \rightarrow \mathbb{Z}_{q}[x]$ given by evaluation at secret $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$
Ciphertexts

$$
\begin{aligned}
& \mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, \times} \mathbb{Z}_{q}[\bar{x}] \\
& \downarrow \delta, \delta \downarrow \delta
\end{aligned}
$$

Plaintexts

- One must add some noise, otherwise broken by linear algebra.
- $f(\vec{s})=2 e+m \bmod q$, for some small noise $e \in \mathbb{Z}_{q}$
- LWE assumption [R05]
- Linear polynomials $f_{i}(\vec{x})$ with
$\left|f_{i}(\vec{s}) \bmod q\right| \ll q$ are comp. indist.
from random $f_{i}(\vec{x})$ modulo q.

Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
- Homomorphism: $\delta: \mathbb{Z}_{q}[\vec{x}] \rightarrow \mathbb{Z}_{q}[x]$ given by evaluation at secret $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$
Ciphertexts

$$
\begin{aligned}
& \mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, \times} \mathbb{Z}_{q}[\bar{x}] \\
& \downarrow \delta, \delta \downarrow \delta
\end{aligned}
$$

Plaintexts

- One must add some noise, otherwise broken by linear algebra.
- $f(\vec{s})=2 e+m \bmod q$, for some small noise $e \in \mathbb{Z}_{q}$
- LWE assumption [R05]
- Linear polynomials $f_{i}(\vec{x})$ with
$\left|f_{i}(\vec{s}) \bmod q\right| \ll q$ are comp. indist.
from random $f_{i}(\vec{x})$ modulo q.

Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
- Homomorphism: $\delta: \mathbb{Z}_{q}[\vec{x}] \rightarrow \mathbb{Z}_{q}[x]$ given by evaluation at secret $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$

Ciphertexts

$$
\begin{aligned}
& \mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, x} \mathbb{Z}_{q}[\bar{x}] \\
& \downarrow \delta, \delta \downarrow \delta
\end{aligned}
$$

Plaintexts

- One must add some noise, otherwise broken by linear algebra.
- $f(\vec{s})=2 e+m \bmod q$, for some small noise $e \in \mathbb{Z}_{q}$
- LWE assumption [R05]
- Linear polynomials $f_{i}(\vec{x})$ with $\left|f_{i}(\vec{s}) \bmod q\right| \ll q$ are comp. indist. from random $f_{i}(\vec{x})$ modulo q.

Regev's scheme based on LWE [R05]

- Key generation
- Secret-key: $\vec{s} \in\left(\mathbb{Z}_{q}\right)^{n}$
- Public-key: $f_{i}(\vec{x})$ such that $f_{i}(\vec{s})=2 e_{i}$ with $e_{i} \ll q$
- Encryption of $m \in\{0,1\}$
- $c(\vec{x})=m+\sum_{i=1}^{\tau} b_{i} \cdot f_{i}(\vec{x})$ for random $b_{i} \leftarrow\{0,1\}$
- Decryption
- Compute $v=c(\vec{s})=m+2 \cdot \sum_{i=1}^{\tau} b_{i} \cdot e_{i}(\bmod q)$
- Recover $m=v \bmod 2$

The BV scheme: relinearization [BV11]

- Regev's ciphertext:
- $c(\vec{x})$ such that $c(\vec{s})=m+2 e \bmod q$, with $\vec{s} \in\left(\mathbb{Z}_{q}\right)^{n}$.
- Multiplication of Regev's ciphertext
- $c(\vec{x})=c_{1}(\vec{x}) \cdot c_{2}(\vec{x})$
- $c(\vec{s})=\left(m_{1}+2 e_{1}\right) \cdot\left(m_{2}+2 e_{2}\right)=m_{1} m_{2}+2 e(\bmod q)$
- Problem: $c(\vec{x})$ is a quadratic polynomial with $(n+1)^{2}$ coefficients !
- instead of $n+1$ for the original ciphertexts $c_{1}(\vec{x})$ and $c_{2}(\vec{x})$
- Publish polynomials $p_{j, k, t}(\vec{x})=2^{t} x_{j} x_{k}+L_{j, k, t}(\vec{x})$
- with $p_{j, k, t}(\vec{s})=2 e_{j, k, t} \bmod q$
- remove the quadratic terms $a_{j k} x_{j} x_{k}$ by
subtraction, using a binary
decomposition of $a_{j k}$.
- Only linear terms remain, so ciphertext
size remains constant

The BV scheme: relinearization [BV11]

- Regev's ciphertext:
- $c(\vec{x})$ such that $c(\vec{s})=m+2 e \bmod q$, with $\vec{s} \in\left(\mathbb{Z}_{q}\right)^{n}$.
- Multiplication of Regev's ciphertext
- $c(\vec{x})=c_{1}(\vec{x}) \cdot c_{2}(\vec{x})$
- $c(\vec{s})=\left(m_{1}+2 e_{1}\right) \cdot\left(m_{2}+2 e_{2}\right)=m_{1} m_{2}+2 e(\bmod q)$
- Problem: $c(\vec{x})$ is a quadratic polynomial with $(n+1)^{2}$ coefficients !
- instead of $n+1$ for the original ciphertexts $c_{1}(\vec{x})$ and $c_{2}(\vec{x})$
- Relinearization [BV11]:
- Publish polynomials $p_{j, k, t}(\vec{x})=2^{t} x_{j} x_{k}+L_{j, k, t}(\vec{x})$
- with $p_{j, k, t}(\vec{s})=2 e_{j, k, t} \bmod q$
- remove the quadratic terms $a_{j k} x_{j} x_{k}$ by subtraction, using a binary decomposition of $a_{j k}$.
- Only linear terms remain, so ciphertext size remains constant
- Modulus switching of $c(\vec{x})=\langle\vec{c},(1, \vec{x})\rangle \bmod q$ to modulo p
- Let $\overrightarrow{c^{\prime}}$ be the integer vector closest to $p / q \cdot \vec{c}$ such that $\overrightarrow{c^{\prime}}=\vec{c} \bmod 2$
- Then $\left[\overrightarrow{c^{\prime}}, \vec{s}\right]_{p}=[\vec{c}, \vec{s}]_{q} \bmod 2:$ decryption remains the same
- and $\left\langle\overrightarrow{c^{\prime}}, \vec{s}\right\rangle \simeq(p / q) \cdot\langle\vec{c}, \vec{s}\rangle$: noise is reduced by a factor q / p.
- Application: reducing noise growth. Assume $p / q=2^{-p}$

- Noise reduction without bootstrapping !

The BGV scheme: modulus switching [BGV11]

- Modulus switching of $c(\vec{x})=\langle\vec{c},(1, \vec{x})\rangle \bmod q$ to modulo p
- Let $\overrightarrow{c^{\prime}}$ be the integer vector closest to $p / q \cdot \vec{c}$ such that $\overrightarrow{c^{\prime}}=\vec{c} \bmod 2$
- Then $\left[\overrightarrow{c^{\prime}}, \vec{s}\right]_{p}=[\vec{c}, \vec{s}]_{q} \bmod 2:$ decryption remains the same
- and $\left\langle\overrightarrow{c^{\prime}}, \vec{s}\right\rangle \simeq(p / q) \cdot\langle\vec{c}, \vec{s}\rangle$: noise is reduced by a factor q / p.
- Application: reducing noise growth. Assume $p / q=2^{-\rho}$.

- Noise reduction without bootstrapping !

Leveled fully homomorphic encryption

- Previous model: exponential growth of noise

- Only bootstrapping can give FHE
- New model: modulus switching after each multiplication layer - with a ladder of moduli p_{i} such that $p_{i+1} / p_{i}=2^{-\rho}$

- Leveled FHE
- Size of p_{1} linear in the circuit depth
- Parameters depend on the depth
- Can accommodate polynomial depth

Leveled fully homomorphic encryption

- Previous model: exponential growth of noise

- Only bootstrapping can give FHE
- New model: modulus switching after each multiplication layer
- with a ladder of moduli p_{i} such that $p_{i+1} / p_{i}=2^{-\rho}$

- Leveled FHE
- Size of p_{1} linear in the circuit depth
- Parameters depend on the depth
- Can accommodate polynomial depth

Leveled fully homomorphic encryption

- Previous model: exponential growth of noise

- Only bootstrapping can give FHE
- New model: modulus switching after each multiplication layer
- with a ladder of moduli p_{i} such that $p_{i+1} / p_{i}=2^{-\rho}$

- Leveled FHE
- Size of p_{1} linear in the circuit depth
- Parameters depend on the depth
- Can accommodate polynomial depth

RLWE-based schemes

- Regev's scheme based on LWE
- Secret-key: $\vec{s} \in\left(\mathbb{Z}_{q}\right)^{n}$
- Public-key: $f_{i}(\vec{x})$ such that $f_{i}(\vec{s})=2 e_{i}$ with $e_{i} \ll q$
- $c(\vec{x})=m+\sum_{i=1}^{\tau} b_{i} \cdot f_{i}(\vec{x})$ for random $b_{i} \leftarrow\{0,1\}$
- $m=(c(\vec{s}) \bmod q) \bmod 2$

- RLWE-based scheme

- We can replace \mathbb{Z}_{q} by the polynomial ring $R_{q}=\mathbb{Z}_{q}[x] /<x^{k}+1>$, where k is a power of 2 .
- Addition and multtiplication of polynomials are performed modulo $x^{k}+1$ and prime q.
- We can take $n=1$.
- We can take $m \in R_{2}=\mathbb{Z}_{2}[x] /<x^{k}+1>$
instead of $\{0,1\}$: more bandwidth

RLWE-based schemes

- Regev's scheme based on LWE
- Secret-key: $\vec{s} \in\left(\mathbb{Z}_{q}\right)^{n}$
- Public-key: $f_{i}(\vec{x})$ such that $f_{i}(\vec{s})=2 e_{i}$ with $e_{i} \ll q$
- $c(\vec{x})=m+\sum_{i=1}^{\tau} b_{i} \cdot f_{i}(\vec{x})$ for random $b_{i} \leftarrow\{0,1\}$
- $m=(c(\vec{s}) \bmod q) \bmod 2$
- RLWE-based scheme
- We can replace \mathbb{Z}_{q} by the polynomial ring $R_{q}=\mathbb{Z}_{q}[x] /<x^{k}+1>$, where k is a power of 2 .
- Addition and multiplication of polynomials are performed modulo $x^{k}+1$ and prime q.
- We can take $n=1$.
- We can take $m \in R_{2}=\mathbb{Z}_{2}[x] /<x^{k}+1>$ instead of $\{0,1\}$: more bandwidth
- Homomorphic encryption with matrices [GSW13]
- Ciphertexts are square matrices instead of vectors
- Homomorphism: $\delta(C, \vec{v})=\mu$ where μ is eigenvalue for secret eigenvector \vec{v}
- Homomorphically add and multiply ciphertext using (roughly) matrix addition and multiplication

Ciphertexts

$$
\begin{aligned}
& \mathbb{Z}^{N \times N} \times \mathbb{Z}^{N \times N} \xrightarrow{+, \times} \mathbb{Z}^{N \times N}
\end{aligned}
$$

- One must add some noise, otherwise
broken by linear algebra

noise \vec{e}.
- Security based on LWE problem.
- Homomorphic encryption with matrices [GSW13]
- Ciphertexts are square matrices instead of vectors
- Homomorphism: $\delta(C, \vec{v})=\mu$ where μ is eigenvalue for secret eigenvector \vec{v}
- Homomorphically add and multiply ciphertext using (roughly) matrix addition and multiplication

Ciphertexts

Plaintexts

- One must add some noise, otherwise broken by linear algebra
- $C \cdot \vec{v}=\mu \cdot \vec{v}+\vec{e}(\bmod q)$
- for message $\mu \in \mathbb{Z}$, for some small noise \vec{e}.
- Security based on LWE problem.

Ciphertext matrices: slow noise growth

- Noise grow of ciphertext multiplication [GSW13]:
- $C_{1} \cdot \vec{v}=\mu_{1} \cdot \vec{v}+\vec{e}_{1}(\bmod q), C_{2} \cdot \vec{v}=\mu_{2} \cdot \vec{v}+\vec{e}_{2}(\bmod q)$
- $\left(C_{1} \cdot C_{2}\right) \cdot \vec{v}=C_{1} \cdot\left(\mu_{2} \cdot \vec{v}+\vec{e}_{2}\right)=\left(\mu_{2} \cdot \mu_{1}\right) \cdot \vec{v}+\vec{e}_{3}$
- with $\vec{e}_{3}=\mu_{2} \cdot \vec{e}_{1}+C_{1} \cdot \vec{e}_{2}$

- Ciphertext flattening: ensure $C_{i} \in\{0,1\}^{N \times N}$, using binary decomposition and $\vec{v}=\left(s_{1}\right.$,
- Leveled FHE

accommodate polynomial depth L.

Ciphertext matrices: slow noise growth

- Noise grow of ciphertext multiplication [GSW13]:
- $C_{1} \cdot \vec{v}=\mu_{1} \cdot \vec{v}+\vec{e}_{1}(\bmod q), C_{2} \cdot \vec{v}=\mu_{2} \cdot \vec{v}+\vec{e}_{2}(\bmod q)$
- $\left(C_{1} \cdot C_{2}\right) \cdot \vec{v}=C_{1} \cdot\left(\mu_{2} \cdot \vec{v}+\vec{e}_{2}\right)=\left(\mu_{2} \cdot \mu_{1}\right) \cdot \vec{v}+\vec{e}_{3}$
- with $\vec{e}_{3}=\mu_{2} \cdot \vec{e}_{1}+C_{1} \cdot \vec{e}_{2}$
- Slow noise growth:
- Ensure $\mu_{i} \in\{0,1\}$, using only NAND gates $\mu_{3}=1-\mu_{1} \cdot \mu_{2}$
- Ciphertext flattening: ensure $C_{i} \in\{0,1\}^{N \times N}$, using binary decomposition and $\vec{v}=\left(s_{1}, \ldots, 2^{\ell} s_{1}, \ldots, s_{n}, \ldots, 2^{\ell} s_{n}\right)$.
- If $\left\|\vec{e}_{1}\right\|_{\infty} \leq B$ and $\left\|\vec{e}_{2}\right\|_{\infty} \leq B,\left\|\vec{e}_{3}\right\|_{\infty} \leq(N+1) \cdot B$
- Leveled FHE

accommodate polynomial depth L.

Ciphertext matrices: slow noise growth

- Noise grow of ciphertext multiplication [GSW13]:
- $C_{1} \cdot \vec{v}=\mu_{1} \cdot \vec{v}+\vec{e}_{1}(\bmod q), C_{2} \cdot \vec{v}=\mu_{2} \cdot \vec{v}+\vec{e}_{2}(\bmod q)$
- $\left(C_{1} \cdot C_{2}\right) \cdot \vec{v}=C_{1} \cdot\left(\mu_{2} \cdot \vec{v}+\vec{e}_{2}\right)=\left(\mu_{2} \cdot \mu_{1}\right) \cdot \vec{v}+\vec{e}_{3}$
- with $\vec{e}_{3}=\mu_{2} \cdot \vec{e}_{1}+C_{1} \cdot \vec{e}_{2}$
- Slow noise growth:
- Ensure $\mu_{i} \in\{0,1\}$, using only NAND gates $\mu_{3}=1-\mu_{1} \cdot \mu_{2}$
- Ciphertext flattening: ensure $C_{i} \in\{0,1\}^{N \times N}$, using binary decomposition and $\vec{v}=\left(s_{1}, \ldots, 2^{\ell} s_{1}, \ldots, s_{n}, \ldots, 2^{\ell} s_{n}\right)$.
- If $\left\|\vec{e}_{1}\right\|_{\infty} \leq B$ and $\left\|\vec{e}_{2}\right\|_{\infty} \leq B,\left\|\vec{e}_{3}\right\|_{\infty} \leq(N+1) \cdot B$
- Leveled FHE
- At depth $L,\|\vec{e}\|_{\infty} \leq(N+1)^{L} \cdot B$
- One can take $q>8 \cdot B \cdot(N+1)^{L}$ and accommodate polynomial depth L.

Fourth generation: homomorphic encryption for approximate numbers

- Homomorphic encryption for real numbers [CKKS17]
- Floating point arithmetic, instead of exact arithmetic.
- Starting point: Regev's scheme.
- Homomorphism: $\delta: \mathbb{Z}_{q}[\vec{x}] \rightarrow \mathbb{Z}_{q}$ given by evaluation at \vec{s}

Ciphertexts

$$
\mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, x} \mathbb{Z}_{q}[\vec{x}]
$$

$$
\downarrow, \delta \quad \downarrow \delta
$$

Plaintexts

- One must add some noise, otherwise broken by linear algebra.
- $f(\vec{s})=m+e \bmod q$, for small $e \in \mathbb{Z}_{q}$
- Noise only affects the low-order bits of
m : approximate computation, as in
floating point arithmetic.
- Application: neural networks.

Fourth generation: homomorphic encryption for approximate numbers

- Homomorphic encryption for real numbers [CKKS17]
- Floating point arithmetic, instead of exact arithmetic.
- Starting point: Regev's scheme.
- Homomorphism: $\delta: \mathbb{Z}_{q}[\vec{x}] \rightarrow \mathbb{Z}_{q}$ given by evaluation at \vec{s}

Ciphertexts

$$
\mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, x} \mathbb{Z}_{q}[\vec{x}]
$$

Plaintexts

$$
\stackrel{\downarrow{ }^{\delta, \delta}}{ } \stackrel{\downarrow}{\mathbb{Z}_{\boldsymbol{q}} \times \mathbb{Z}_{\boldsymbol{q}} \xrightarrow{+, \times} \stackrel{\mathbb{Z}}{\boldsymbol{q}}^{\downarrow}, ~}
$$

- One must add some noise, otherwise broken by linear algebra.
- $f(\vec{s})=m+e \bmod q$, for small $e \in \mathbb{Z}_{q}$
- Noise only affects the low-order bits of m : approximate computation, as in floating point arithmetic.
- Application: neural networks.

[CKKS17]: ciphertext multiplication and rescaling

- Ciphertext multiplication $c(\vec{x})=c_{1}(\vec{x}) \cdot c_{2}(\vec{x})$
- $c(\vec{s})=\left(m_{1}+e_{1}\right) \cdot\left(m_{2}+e_{2}\right)=m_{1} m_{2}+e^{\star}(\bmod q)$
- with $e^{\star}=m_{1} e_{2}+e_{1} m_{2}+e_{1} e_{2}$.
- Rescaling of ciphertext:
- $c^{\prime}(\vec{x})=\lfloor\vec{c}(x) / p\rceil(\bmod q / p)$
- Valid encryption of $\lfloor m / p\rceil$ with noise $\simeq e / p$
- Similar to modulus switching

Conclusion

- Main challenge: make FHE pratical !
- New primitives
- Libraries (HElib)
- Compiler to homomorphic evaluation
- Applications
- Homomorphic machine learning: evaluate a neural network without revealing the weights.
- Genome-wide association studies: linear regression, logistic regression.

References

AP14 Jacob Alperin-Sheriff, Chris Peikert. Faster Bootstrapping with Polynomial Error. IACR Cryptol. ePrint Arch. 2014: 94 (2014)

BGV11 Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. Fully Homomorphic Encryption without Bootstrapping. Electron. Colloquium Comput. Complex. 18: 111 (2011)
BV14 Zvika Brakerski, Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. ITCS 2014: 1-12
CCK+13 Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi Tibouchi, Aaram Yun: Batch Fully Homomorphic Encryption over the Integers. EUROCRYPT 2013: 315-335
CKKS17 Jung Hee Cheon, Andrey Kim, Miran Kim, Yong Soo Song. Homomorphic Encryption for Arithmetic of Approximate Numbers. ASIACRYPT (1) 2017: 409-437

CN12 Yuanmi Chen, Phong Q. Nguyen. Faster Algorithms for Approximate Common Divisors: Breaking Fully-Homomorphic-Encryption Challenges over the Integers. EUROCRYPT 2012: 502-519

CMNT11 Jean-Sébastien Coron, Avradip Mandal, David Naccache, Mehdi Tibouchi: Fully Homomorphic Encryption over the Integers with Shorter Public Keys. CRYPTO 2011: 487-504
CNT12 Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi. Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers. EUROCRYPT 2012: 446-464
DGHV10 Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan. Fully Homomorphic Encryption over the Integers. EUROCRYPT 2010: 24-43
Gen09 Craig Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009: 169-178

GH11 Craig Gentry, Shai Halevi. Implementing Gentry's Fully-Homomorphic Encryption Scheme. EUROCRYPT 2011: 129-148
GSW13 Craig Gentry, Amit Sahai, Brent Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. CRYPTO (1) 2013: 75-92
P99 Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. EUROCRYPT 1999: 223-238
R05 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005: 84-93
SV10 Nigel P. Smart, Frederik Vercauteren. Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. Public Key Cryptography 2010: 420-443

