Algorithms for Numbers and Public-Key Cryptography

Jean-Sébastien Coron

University of Luxembourg

Course summary

- Algorithms for numbers
- Describe the basic algorithms for dealing with numbers
- Implement them on a computer
- Public-key cryptography
- Describe the basic public-key algorithms
- and the main cryptanalytical attacks
- Implement them on a computer

Course organization

- The course is based on lectures, homework and personal projects.
- Homework:
- Implementation of the basic algorithms described in the lectures.
- Personal projects:
- To be chosen among a list of possible topics. But you can also select your own topic.
- You are encouraged to work in pairs.
- Selection of project to be done in mid April.

Basic number theory for cryptography

Jean-Sébastien Coron

University of Luxembourg

Basic number theory for cryptography

- Basic properties
- Congruence, modular arithmetic, modular exponentiation.
- GCD, Euclid's algorithm, modular inverse, CRT
- Euler function, Fermat's little theorem
- The set \mathbb{Z}_{p}^{*} for prime p
- Generators of \mathbb{Z}_{p}^{*}
- Quadratic residues, Legendre symbol, Jacobi symbol
- Computing square roots
- Recommended textbook
- Victor Shoup, A Computational Introduction to Number Theory and Algebra
- https://www.shoup.net/ntb/

Euclidean division and modulo operator

Theorem (Division with remainder)

For $a, b \in \mathbb{Z}$ with $b>0$, there exist unique $q, r \in \mathbb{Z}$ such that $a=b q+r$ and $0 \leq r<b$.

- Quotient
- $q=\lfloor a / b\rfloor$, where $\lfloor x\rfloor$ denote the greatest integer $\leq x$.
- Modulo operator
- We write $r=a \bmod b$
- $a \bmod b=a-b \cdot\lfloor a / b\rfloor$
- Examples:
$7 \bmod 3=1$
$10 \bmod 4=2$

Basic properties of integers

Theorem (Fundamental theorem of arithmetic)

Every non-zero integer n can be expressed as

$$
n= \pm p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}
$$

where the p_{i} 's are distinct primes and the e_{i} are positive integers. Moreover the decomposition is unique, up to reordering of the primes.

- Proof: existence is easy by induction; unicity: see any standard textbook.

Congruence

- Congruence.
- Let $n>0$ and $a, b \in \mathbb{Z}$.

$$
a \equiv b(\bmod n) \Leftrightarrow n \mid(a-b)
$$

- n is called the modulus.
- Should not be confused with the mod of Euclidean division.
- Examples:
- $2 \equiv 8(\bmod 3)$, since $3 \mid(8-2)$.
- $12 \equiv 2(\bmod 5)$, since $5 \mid(12-2)$.
- Basic properties:
- $a \equiv b(\bmod n) \Leftrightarrow \exists k \in \mathbb{Z}, a=b+k \cdot n$.
- $a \equiv a(\bmod n)$
- $a \equiv b(\bmod n) \Rightarrow b \equiv a(\bmod n)$
- $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ implies $a \equiv c(\bmod n)$
- When working modulo n, we can always choose a representative between 0 and $n-1$:
- Theorem: for any $a \in \mathbb{Z}$, there exists a unique integer $b \in \mathbb{Z}$ such that $a \equiv b(\bmod n)$ and $0 \leq b<n$, namely $b:=a \bmod n$.
- Examples:
- $23 \equiv 3(\bmod 5)$
- $25 \equiv 4(\bmod 7)$

Properties

- Congruence is compatible with addition and multiplication
- If $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$, then
- $a+b \equiv a^{\prime}+b^{\prime}(\bmod n)$ and $a \cdot b \equiv a^{\prime} \cdot b^{\prime}(\bmod n)$.
- This means that we can work with congruence relations as with ordinary equalities
- When computing modulo n, one can substitute to x a value $x^{\prime} \equiv x(\bmod n)$:
- Compute a with $0 \leq a<7$ such that $a \equiv 83 \cdot 72(\bmod 7)$.
- First approach: $83 \cdot 72=5976$
$a=5976(\bmod 7)=5$.
- Second approach: $83 \equiv 6(\bmod 7)$, $72 \equiv 2(\bmod 7)$,
$83 \cdot 72 \equiv 6 \cdot 2 \equiv 12 \equiv 5(\bmod 7)$.

Modular exponentiation

- We want to compute $c=a^{b}(\bmod n)$.
- Example: RSA
- $c=m^{e}(\bmod n)$ where m is the message, e the public exponent, and n the modulus.
- Naive method:
- Multiplying a in total b times by itself modulo n
- Very slow: if b is 100 bits, roughly 2^{100} multiplications !
- Example: compute $b=a^{16}(\bmod n)$
- $b=a \cdot a \cdot \ldots \cdot a \cdot a(\bmod n): 15$ multiplications
- $b=\left(\left(\left(a^{2}\right)^{2}\right)^{2}\right)^{2}(\bmod n): 4$ multiplications

Square and multiply algorithm

- Let $b=\left(b_{\ell-1} \ldots b_{0}\right)_{2}$ the binary representation of b

$$
b=\sum_{i=0}^{\ell-1} b_{i} \cdot 2^{i}
$$

- Square and multiply algorithm :
- Input : a, b and n
- Output: $a^{b}(\bmod n)$
- $c \leftarrow 1$
for $i=\ell-1$ down to 0 do
$c \leftarrow c^{2}(\bmod n)$ if $b_{i}=1$ then $c \leftarrow c \cdot a(\bmod n)$
Output c

Analysis

- Let B_{i} be the integer with binary representation $\left(b_{\ell-1} \ldots b_{i}\right)_{2}$, and let

$$
c_{i}=a^{B_{i}} \quad(\bmod n)
$$

- Initialization

$$
\left\{\begin{array}{l}
B_{\ell}=0 \\
c_{\ell}=1
\end{array}\right.
$$

- Recursive step

$$
\left\{\begin{array}{l}
B_{i}=2 \cdot B_{i+1}+b_{i} \\
c_{i}=\left(c_{i+1}\right)^{2} \cdot a^{b_{i}}(\bmod n)
\end{array}\right.
$$

- Final step

$$
\left\{\begin{array}{l}
B_{0}=b \\
c_{0}=a^{b}(\bmod n)
\end{array}\right.
$$

Greatest common divisor

- Greatest common divisor:
- A common divisor $d \in \mathbb{Z}$ of $a, b \in \mathbb{Z}$ is such that $d \mid a$ and $d \mid b$
- We say that d is a greatest common divisor of a and b if $d>0$ and all other common divisors of a and b divide d.
- There exists a unique greatest common divisor, so we can write $d=\operatorname{gcd}(a, b)$ and moreover

$$
a \mathbb{Z}+b \mathbb{Z}=d \mathbb{Z}
$$

- Examples
- $\operatorname{gcd}(9,6)=3$
- $\operatorname{gcd}(7,5)=1$.
- Let $a, b>0$

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

- Proof. Let $r=a \bmod b=a-q \cdot b$ for some $q \in \mathbb{Z}$.
- If $d \mid a$ and $d \mid b$, then $d \mid r$, and then $d \mid \operatorname{gcd}(b, r)$. Then $\operatorname{gcd}(a, b) \mid \operatorname{gcd}(b, r)$.
- Similarly $\operatorname{gcd}(b, r) \mid \operatorname{gcd}(a, b)$, therefore $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
- Example:
- $\operatorname{gcd}(47,18)=\operatorname{gcd}(18,11)=\operatorname{gcd}(11,7)=\operatorname{gcd}(7,4)=$ $\operatorname{gcd}(4,3)=\operatorname{gcd}(3,1)=\operatorname{gcd}(1,0)=1$
- This is Euclid's algorithm

Euclid's algorithm

- Euclid's algorithm with input $a, b>0$.
- Let $r_{0}=a$ and $r_{1}=b$.
- For $i \geq 0$, one defines the sequence $\left(r_{i}\right)$ and $\left(q_{i}\right)$ such that :

$$
r_{i}=q_{i} \cdot r_{i+1}+r_{i+2}
$$

where q_{i} and r_{i+2} are the quotient and remainder of the division of r_{i} by r_{i+1}

- The sequence is decreasing, so $r_{k}=0$ for some $k>0$
- Then $\operatorname{gcd}(a, b)=r_{k-1}$.
- Proof
- $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{i}, r_{i+1}\right)$ for all $i<k$
- $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{k-1}, r_{k}\right)$

$$
=\operatorname{gcd}\left(r_{k-1}, 0\right)=r_{k-1}
$$

Example of gcd computation

- Example of $\operatorname{gcd}(a, b)$ with $a=47, b=18$
- $r_{0}=a=47$
- $r_{1}=b=18$
- $r_{i}=q_{i} \cdot r_{i+1}+r_{i+2}$

i	0	1	2	3	4	5	6	7
r_{i}	47	18	11	7	4	3	1	0

$$
\begin{aligned}
\operatorname{gcd}(47,18) & =\operatorname{gcd}(18,11)=\operatorname{gcd}(11,7)=\operatorname{gcd}(7,4) \\
& =\operatorname{gcd}(4,3)=\operatorname{gcd}(3,1)=\operatorname{gcd}(1,0)=1
\end{aligned}
$$

Modular arithmetic

- Let an integer $n>1$ called the modulus.
- Modular reduction
- $r:=a \bmod n$, remainder of the division of a by n.
- $0 \leq r<n$
- Ex: $11 \bmod 8=3,15 \bmod 5=0$.
- Congruence:
- $a \equiv b(\bmod n)$ if $n \mid(a-b)$.
- $a \equiv b(\bmod n)$ iif a and b have same remainder modulo n.
- Ex: $11 \equiv 19(\bmod 8)$.
- If $r:=a \bmod n$, then $r \equiv a(\bmod n)$.

Modular arithmetic

- If $a_{0} \equiv b_{0}(\bmod n)$ and $a_{1} \equiv b_{1}(\bmod n)$
- $a_{0}+a_{1} \equiv b_{0}+b_{1}(\bmod n)$
- $a_{0}-a_{1} \equiv b_{0}-b_{1}(\bmod n)$
- $a_{0} \cdot a_{1} \equiv b_{0} \cdot b_{1}(\bmod n)$
- Integers modulo n
- Integers modulo n are $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$
- Addition, subtraction or multiplication in \mathbb{Z}_{n} is done by first doing it in \mathbb{Z} and then reducing the result modulo n.
- For example in \mathbb{Z}_{7} :
- $6+4=3,3-4=6,3 \cdot 6=4$.

Multiplicative inverse

- Multiplicative inverse :
- Let $n>0$ and $a \in \mathbb{Z}$. An integer a^{\prime} is a multiplicative inverse of a modulo n if $a \cdot a^{\prime} \equiv 1(\bmod n)$.
- Theorem :
- Let $n, a \in \mathbb{Z}$ with $n>0$. Then a has a multiplicatif inverse modulo n iff $\operatorname{gcd}(a, n)=1$. Moreover such multiplicative inverse is unique modulo n.
- Proof
- If $a \cdot a^{\prime} \equiv 1(\bmod n)$, then $a \cdot a^{\prime}=1+k \cdot n$ for some $k \in \mathbb{Z}$. Therefore if $d \mid a$ and $d \mid n$, then $d \mid 1$. Therefore $\operatorname{gcd}(a, n)=1$.
- If $\operatorname{gcd}(a, n)=1$, then $a \mathbb{Z}+n \mathbb{Z}=\mathbb{Z}$, so $a \cdot s+n \cdot t=1$ for some $s, t \in \mathbb{Z}$. Therefore $a \cdot s \equiv 1(\bmod n)$.

Example

- The multiplicative inverse of 5 modulo 7 is 3 because

$$
3 \cdot 5 \equiv 15 \equiv 1 \quad(\bmod 7)
$$

- 2 has no multiplicative inverse modulo 6 :
- $2 \cdot 1 \equiv 2(\bmod 6)$
- $2 \cdot 2 \equiv 4(\bmod 6)$
- $2 \cdot 3 \equiv 0(\bmod 6)$
- $2 \cdot 4 \equiv 2(\bmod 6)$
- $2 \cdot 5 \equiv 4(\bmod 6)$

Euclid's extended algorithm

- Euclid's extended algorithm
- Let $a, b \in \mathbb{Z}$ and $d=\operatorname{gcd}(a, b)$.
- Computes $u, v \in \mathbb{Z}$ such that $a \cdot u+b \cdot v=d$.
- Based on computing two sequences u_{i}, v_{i} such that $a \cdot u_{i}+b \cdot v_{i}=r_{i}$, where eventually $r_{k-1}=d$.
- Application to computing multiplicative inverse
- Let a, n with $n>0$ and $\operatorname{gcd}(a, n)=1$.
- With Euclid's extended algorithm, one computes u, v such that

$$
a \cdot u+n \cdot v=1
$$

- Then $a \cdot u \equiv 1(\bmod n)$

Euclid's extended algorithm

- Euclid's extended algorithm, for $a>0$ and $b \geq 0$.
- $r_{0}=a$ and $r_{1}=b$.
- For $i \geq 0$, let $r_{i}=q_{i} \cdot r_{i+1}+r_{i+2}$
- Two additional sequences u_{i} and v_{i}.
- $u_{0}:=1, v_{0}:=0, u_{1}:=0, v_{1}:=1$ and for $i \geq 2$, one defines

$$
\left\{\begin{array}{l}
u_{i}=u_{i-2}-q_{i-2} \cdot u_{i-1} \\
v_{i}=v_{i-2}-q_{i-2} \cdot v_{i-1}
\end{array}\right.
$$

- There exists $k>0$ such that $r_{k}=0$.
- $\operatorname{gcd}(a, b)=r_{k-1}=u_{k-1} \cdot a+v_{k-1} \cdot b$
- We always have

$$
r_{i}=u_{i} \cdot a+v_{i} \cdot b
$$

- Initialization

> - $r_{0}=a=1 \cdot a+0 \cdot b$.
> $-r_{1}=b=0 \cdot a+1 \cdot b$.

- Recursive step:
- Assume $u_{i-2} \cdot a+v_{i-2} \cdot b=r_{i-2}$
$u_{i-1} \cdot a+v_{i-1} \cdot b=r_{i-1}$

$$
\begin{aligned}
u_{i} \cdot a+v_{i} \cdot b= & \left(u_{i-2}-q_{i-2} \cdot u_{i-1}\right) \cdot a+ \\
& \left(v_{i-2}-q_{i-2} \cdot v_{i-1}\right) \cdot b \\
= & r_{i-2}-q_{i-2} \cdot r_{i-1} \\
= & r_{i}
\end{aligned}
$$

Example of extended gcd computation

- Compute u, v such that $47 \cdot u+18 \cdot v=1$
- $\left(r_{0}, r_{1}\right)=(47,18)$
- $\left(u_{0}, u_{1}\right)=(1,0)$
- $\left(v_{0}, v_{1}\right)=(0,1)$

$$
\left\{\begin{aligned}
r_{i-2} & =q_{i-2} \cdot r_{i-1}+r_{i} \\
u_{i} & =u_{i-2}-q_{i-2} \cdot u_{i-1} \\
v_{i} & =v_{i-2}-q_{i-2} \cdot v_{i-1}
\end{aligned}\right.
$$

i	0	1	2	3	4	5	6	7
r_{i}	47	18						
q_{i}								
u_{i}	1	0						
v_{i}	0	1						

Example of extended gcd computation

- Compute u, v such that $47 \cdot u+18 \cdot v=1$

$$
\begin{aligned}
& \bullet\left(r_{0}, r_{1}\right)=(47,18) \\
& \bullet\left(u_{0}, u_{1}\right)=(1,0) \\
& \bullet\left(v_{0}, v_{1}\right)=(0,1) \\
& \qquad\left\{\begin{array}{rll}
r_{i-2} & =q_{i-2} \cdot r_{i-1}+r_{i} \\
u_{i} & =u_{i-2}-q_{i-2} \cdot u_{i-1} \\
v_{i} & =v_{i-2}-q_{i-2} \cdot v_{i-1}
\end{array}\right.
\end{aligned}
$$

i	0	1	2	3	4	5	6	7
r_{i}	47	18	11					
q_{i}	2							
u_{i}	1	0	1					
v_{i}	0	1	-2					

Example of extended gcd computation

- Compute u, v such that $47 \cdot u+18 \cdot v=1$

$$
\begin{aligned}
& \bullet\left(r_{0}, r_{1}\right)=(47,18) \\
& \bullet\left(u_{0}, u_{1}\right)=(1,0) \\
& \bullet\left(v_{0}, v_{1}\right)=(0,1) \\
& \qquad\left\{\begin{array}{rll}
r_{i-2} & =q_{i-2} \cdot r_{i-1}+r_{i} \\
u_{i} & =u_{i-2}-q_{i-2} \cdot u_{i-1} \\
v_{i} & =v_{i-2}-q_{i-2} \cdot v_{i-1}
\end{array}\right.
\end{aligned}
$$

i	0	1	2	3	4	5	6	7
r_{i}	47	18	11	7				
q_{i}	2	1						
u_{i}	1	0	1	-1				
v_{i}	0	1	-2	3				

Example of extended gcd computation

- Compute u, v such that $47 \cdot u+18 \cdot v=1$
- $\left(r_{0}, r_{1}\right)=(47,18)$
- $\left(u_{0}, u_{1}\right)=(1,0)$
- $\left(v_{0}, v_{1}\right)=(0,1)$

$$
\left\{\begin{aligned}
r_{i-2} & =q_{i-2} \cdot r_{i-1}+r_{i} \\
u_{i} & =u_{i-2}-q_{i-2} \cdot u_{i-1} \\
v_{i} & =v_{i-2}-q_{i-2} \cdot v_{i-1}
\end{aligned}\right.
$$

i	0	1	2	3	4	5	6	7
r_{i}	47	18	11	7	4			
q_{i}	2	1	1					
u_{i}	1	0	1	-1	2			
v_{i}	0	1	-2	3	-5			

Example of extended gcd computation

- Compute u, v such that $47 \cdot u+18 \cdot v=1$
- $\left(r_{0}, r_{1}\right)=(47,18)$
- $\left(u_{0}, u_{1}\right)=(1,0)$
- $\left(v_{0}, v_{1}\right)=(0,1)$

$$
\left\{\begin{aligned}
r_{i-2} & =q_{i-2} \cdot r_{i-1}+r_{i} \\
u_{i} & =u_{i-2}-q_{i-2} \cdot u_{i-1} \\
v_{i} & =v_{i-2}-q_{i-2} \cdot v_{i-1}
\end{aligned}\right.
$$

i	0	1	2	3	4	5	6	7
r_{i}	47	18	11	7	4	3		
q_{i}	2	1	1	1				
u_{i}	1	0	1	-1	2	-3		
v_{i}	0	1	-2	3	-5	8		

Example of extended gcd computation

- Compute u, v such that $47 \cdot u+18 \cdot v=1$
- $\left(r_{0}, r_{1}\right)=(47,18)$
- $\left(u_{0}, u_{1}\right)=(1,0)$
- $\left(v_{0}, v_{1}\right)=(0,1)$

$$
\left\{\begin{aligned}
r_{i-2} & =q_{i-2} \cdot r_{i-1}+r_{i} \\
u_{i} & =u_{i-2}-q_{i-2} \cdot u_{i-1} \\
v_{i} & =v_{i-2}-q_{i-2} \cdot v_{i-1}
\end{aligned}\right.
$$

i	0	1	2	3	4	5	6	7
r_{i}	47	18	11	7	4	3	1	
q_{i}	2	1	1	1	1			
u_{i}	1	0	1	-1	2	-3	5	
v_{i}	0	1	-2	3	-5	8	-13	

Example of extended gcd computation

- Compute u, v such that $47 \cdot u+18 \cdot v=1$
- $\left(r_{0}, r_{1}\right)=(47,18)$
- $\left(u_{0}, u_{1}\right)=(1,0)$
- $\left(v_{0}, v_{1}\right)=(0,1)$

$$
\left\{\begin{aligned}
r_{i-2} & =q_{i-2} \cdot r_{i-1}+r_{i} \\
u_{i} & =u_{i-2}-q_{i-2} \cdot u_{i-1} \\
v_{i} & =v_{i-2}-q_{i-2} \cdot v_{i-1}
\end{aligned}\right.
$$

i	0	1	2	3	4	5	6	7
r_{i}	47	18	11	7	4	3	1	0
q_{i}	2	1	1	1	1			
u_{i}	1	0	1	-1	2	-3	5	
v_{i}	0	1	-2	3	-5	8	-13	

Example of extended gcd computation

- Compute u, v such that $47 \cdot u+18 \cdot v=1$
- $\left(r_{0}, r_{1}\right)=(47,18)$
- $\left(u_{0}, u_{1}\right)=(1,0)$
- $\left(v_{0}, v_{1}\right)=(0,1)$

$$
\left\{\begin{aligned}
r_{i-2} & =q_{i-2} \cdot r_{i-1}+r_{i} \\
u_{i} & =u_{i-2}-q_{i-2} \cdot u_{i-1} \\
v_{i} & =v_{i-2}-q_{i-2} \cdot v_{i-1}
\end{aligned}\right.
$$

i	0	1	2	3	4	5	6	7
r_{i}	47	18	11	7	4	3	1	0
q_{i}	2	1	1	1	1			
u_{i}	1	0	1	-1	2	-3	5	
v_{i}	0	1	-2	3	-5	8	-13	

$47 \cdot 5+18 \cdot(-13)=1$

Solving linear congruence

- Let $a, n \in \mathbb{Z}$ with $n>0$ such that $\operatorname{gcd}(a, n)=1$. Let $b \in \mathbb{Z}$. The equation $a \cdot x \equiv b(\bmod n)$ has a unique solution x modulo n.
- Let a^{-1} by the multiplicative inverse of a modulo n.

$$
a \cdot a^{-1} \cdot x \equiv x \equiv a^{-1} \cdot b \quad(\bmod n)
$$

- Example :
- Find x such that $5 \cdot x \equiv 6(\bmod 7)$
- 3 is the inverse of 5 modulo 7 because $5 \cdot 3 \equiv 1(\bmod 7)$.
- $3 \cdot 5 \cdot x \equiv 15 \cdot x \equiv 1 \cdot x \equiv 3 \cdot 6 \equiv 4(\bmod 7)$
- $x \equiv 4(\bmod 7)$

Chinese remainder theorem

- Chinese remainder theorem
- Let two integers $n_{1}>1$ and $n_{2}>0$ with $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$.
- For all $a_{1}, a_{2} \in \mathbb{Z}$, there exists an integer z such that

$$
\left\{\begin{array}{rll}
z & \equiv a_{1} & \left(\bmod n_{1}\right) \\
z & \equiv a_{2} & \left(\bmod n_{2}\right)
\end{array}\right.
$$

- z is unique modulo $n_{1} \cdot n_{2}$.
- Existence:
- Let $m_{1}=\left(n_{2}\right)^{-1} \bmod n_{1}$ and $m_{2}=\left(n_{1}\right)^{-1} \bmod n_{2}$

$$
z:=n_{2} \cdot m_{1} \cdot a_{1}+n_{1} \cdot m_{2} \cdot a_{2}
$$

- $z \equiv\left(n_{2} \cdot m_{1}\right) \cdot a_{1} \equiv a_{1}\left(\bmod n_{1}\right)$
- $z \equiv\left(n_{1} \cdot m_{2}\right) \cdot a_{2} \equiv a_{2}\left(\bmod n_{2}\right)$

Euler function

- Definition:
- $\phi(n)$ for $n>0$ is defined as the number of integers a comprised between 0 and $n-1$ such that $\operatorname{gcd}(a, n)=1$.
- $\phi(1)=1, \phi(2)=1, \phi(3)=2, \phi(4)=2$.
- Equivalently:
- Let \mathbb{Z}_{n}^{*} be the set of integers a comprised between 0 and $n-1$ such that $\operatorname{gcd}(a, n)=1$.
- Then $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$.

Properties

- If $p \geq 2$ is prime, then

$$
\phi(p)=p-1
$$

- More generally, for any $e \geq 1$,

$$
\phi\left(p^{e}\right)=p^{e-1} \cdot(p-1)
$$

- For $n, m>0$ such that $\operatorname{gcd}(n, m)=1$, we have:

$$
\phi(n \cdot m)=\phi(n) \cdot \phi(m)
$$

$\phi\left(p^{e}\right)=p^{e-1} \cdot(p-1)$

- If p is prime
- Then for any integer $1 \leq a<p, \operatorname{gcd}(a, p)=1$
- Therefore $\phi(p)=p-1$
- For $n=p^{e}$, the integers between 0 and n not co-prime with n are
- $0, p, 2 \cdot p, \ldots,\left(p^{e-1}-1\right) \cdot p$
- There are p^{e-1} of them.
- Therefore, $\phi\left(p^{e}\right)=p^{e}-p^{e-1}=p^{e-1} \cdot(p-1)$

$\phi(n \cdot m)=\phi(n) \cdot \phi(m)$

- Consider the map:

$$
\begin{aligned}
f: \mathbb{Z}_{n m} & \rightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m} \\
a & \rightarrow(a \bmod n, a \bmod m)
\end{aligned}
$$

- From the CRT, the map is a bijection.
- Moreover, $\operatorname{gcd}(a, n \cdot m)=1$ if and only if $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(a, m)=1$.
- Therefore, $\left|\mathbb{Z}_{n m}^{*}\right|=\left|\mathbb{Z}_{n}^{*}\right| \cdot\left|\mathbb{Z}_{m}^{*}\right|$
- This implies $\phi(n \cdot m)=\phi(n) \cdot \phi(m)$.
- If $n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$ is the factorization of n into primes, then:

$$
\phi(n)=\prod_{i=1}^{r} p_{i}^{e_{i}-1} \cdot\left(p_{i}-1\right)=n \prod_{i=1}^{r}\left(1-1 / p_{i}\right)
$$

- Proof: immediate consequence of the previous properties.
- Example
- $\phi(45)=\phi\left(3^{2}\right) \cdot \phi(5)=3 \cdot 2 \cdot 4=24$

Euler's theorem

- Theorem
- For any integer $n>1$ and any integer a such that $\operatorname{gcd}(a, n)=1$, we have $a^{\phi(n)} \equiv 1 \bmod n$.
- Proof
- Consider the map $f: \mathbb{Z}_{n}^{*} \rightarrow \mathbb{Z}_{n}^{*}$, with $f(b)=a \cdot b$
- f is a permutation, therefore :

$$
\prod_{b \in \mathbb{Z}_{n}^{*}} b=\prod_{b \in \mathbb{Z}_{n}^{*}} f(b)=\prod_{b \in \mathbb{Z}_{n}^{*}}(a \cdot b)=a^{\phi(n)} \cdot\left(\prod_{b \in \mathbb{Z}_{n}^{*}} b\right)
$$

- Therefore $a^{\phi(n)} \equiv 1(\bmod n)$.
- Theorem
- For any prime p and any integer $a \neq 0(\bmod p)$, we have $a^{p-1} \equiv 1(\bmod p)$. Moreover, for any integer a, we have $a^{p} \equiv a(\bmod p)$.
- Proof: follows from Euler's theorem and $\phi(p)=p-1$.

Multiplicative order

- The multiplicative order of an integer a modulo n is defined as the smallest integer $k>0$ such that

$$
a^{k} \equiv 1 \quad(\bmod n)
$$

- Lagrange theorem: we must have $k \mid \phi(n)$
- $a \in \mathbb{Z}$ a primitive root modulo n if $k=\phi(n)$
- Example

i	1	2	3	4
$1^{i} \bmod 5$	1	1	1	1
$2^{i} \bmod 5$	2	4	3	1
$3^{i} \bmod 5$	3	4	2	1
$4^{i} \bmod 5$	4	1	4	1

- 1 has order 1, 4 has order 2.
- 2 and 3 have order 4 (primitive roots)
- \mathbb{Z}_{p}^{*} is a cyclic group
- There exists $g \in \mathbb{Z}_{p}^{*}$ such that

$$
\mathbb{Z}_{p}^{*}=\left\{1, g, g^{2}, \ldots, g^{p-2}\right\}
$$

- Such a g is called a generator of \mathbb{Z}_{p}^{*} (primitive root).
- Example
- In $\mathbb{Z}_{5}^{*},\langle 2\rangle=\left\{1,2,2^{2}, 2^{3}\right\}=\{1,2,4,3\}=\mathbb{Z}_{5}^{*}$
- But in $\mathbb{Z}_{5}^{*},\langle 4\rangle=\{1,4\} \neq \mathbb{Z}_{5}^{*}$ so 4 is not a generator of \mathbb{Z}_{5}^{*}.

Quadratic residues

- A quadratic residue modulo n is the square of an integer modulo n

$$
\begin{aligned}
\operatorname{QR}_{n} & =\left\{y: \operatorname{gcd}(y, n)=1 \wedge \exists x, y=x^{2}(\bmod n)\right\} \\
\operatorname{NQR}_{n} & =\left\{y: \operatorname{gcd}(y, n)=1 \wedge \forall x, y \neq x^{2}(\bmod n)\right\}
\end{aligned}
$$

- Example

$$
\begin{aligned}
\operatorname{QR}_{13} & =\{1,3,4,9,10,12\} \\
\operatorname{NQR}_{13} & =\{2,5,6,7,8,11\}
\end{aligned}
$$

- because $\left\{1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}, 7^{2}, 8^{2}, 9^{2}, 10^{2}, 11^{2}, 12^{2}\right\} \equiv$ $\{1,3,4,9,10,12\}(\bmod 13)$
- Theorem: let p be a prime number, then $\# \mathrm{QR}_{p}=\# \mathrm{NQR}_{p}=(p-1) / 2$

Legendre symbol

- For a prime number p, we define the Legendre symbol as

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{cl}
1 & \text { if } a \in \mathrm{QR}_{p} \\
-1 & \text { if } a \in \mathrm{NQR}_{p} \\
0 & \text { if } p \mid a
\end{array}\right.
$$

- For a prime p number

$$
a^{(p-1) / 2} \equiv\left(\frac{a}{p}\right) \quad(\bmod p)
$$

- The Legendre symbol can be efficiently computed
- Let $g \in \mathbb{Z}_{p}^{*}$ be a generator of \mathbb{Z}_{p}^{*}. Let $x=g^{r}$ for some $r \in \mathbb{Z}$.

$$
x \in \mathrm{QR}_{p} \Leftrightarrow r \text { is even }
$$

- The Legendre symbol reveals the parity of r.

The Jacobi symbol

- For any integer $n=p_{1} \cdot p_{2} \cdots p_{k}$, we define the Jacobi symbol as

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right) \cdot\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{k}}\right)
$$

- For m, n odd, positive integers, and for $a, b \in \mathbb{Z}$. From the definition

$$
\begin{gathered}
\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right) \quad\left(\frac{a}{m n}\right)=\left(\frac{a}{m}\right)\left(\frac{a}{n}\right) \\
\left(\frac{a}{n}\right)=\left(\frac{a \bmod n}{n}\right)
\end{gathered}
$$

- Other properties

$$
\begin{aligned}
\left(\frac{-1}{n}\right)=(-1)^{(n-1) / 2} & \left(\frac{2}{n}\right)=(-1)^{\left(n^{2}-1\right) / 8} \\
& \left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{(m-1)(n-1) / 4}
\end{aligned}
$$

Computing the Jacobi symbol

Algorithm 1 Jacobi(a, n)
1: If $a \leq 1$ then return a
2: if a is odd then
3: If $a \equiv n \equiv 3(\bmod 4)$

$$
\triangleright\left(\frac{a}{n}\right)\left(\frac{n}{a}\right)=(-1)^{(a-1)(n-1) / 4}
$$

4: \quad then return $-J a c o b i(n \bmod a, a)$
5: \quad else return Jacobi $(n \bmod a, a)$
6: end if
7: if a is even then

$$
\triangleright\left(\frac{2}{n}\right)=(-1)^{\left(n^{2}-1\right) / 8}
$$

8: If $n= \pm 1(\bmod 8)$
9: \quad then return $\operatorname{Jacobi}(a / 2, n)$
10: \quad else return $-\operatorname{Jacobi}(a / 2, n)$
11: end if

- Example

$$
\left(\frac{37}{47}\right)=\left(\frac{10}{37}\right)=-\left(\frac{5}{37}\right)=-\left(\frac{2}{5}\right)=\left(\frac{1}{5}\right)=1
$$

Computing modular square roots

- For a prime number $p \equiv 3(\bmod 4)$ and $\alpha \in \mathrm{QR}_{p}$, we have that a square-root of α can be computed as:

$$
\beta=\alpha^{(p+1) / 4} \quad(\bmod p)
$$

- If β is the square root of α then $-\beta$ is also a square root of α modulo p.
- Proof: since $\alpha \in \mathrm{QR}_{p}$, there exists $\tilde{\beta}$ such that $\tilde{\beta}^{2}=\alpha$

$$
\beta^{2}=\alpha^{(p+1) / 2}=\tilde{\beta}^{p+1}=\tilde{\beta}^{p-1} \cdot \tilde{\beta}^{2}=\tilde{\beta}^{2}=\alpha
$$

Solving quadratic equations in \mathbb{Z}_{p}

$$
a \cdot x^{2}+b \cdot x+c=0 \quad(\bmod p)
$$

- If a solution exists it must be given by

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Equation has a solution in \mathbb{Z}_{p} iff $\Delta \in \mathrm{QR}_{p}$ where $\Delta=b^{2}-4 \cdot a \cdot c$
- Compute $\sqrt{\Delta}$ in \mathbb{Z}_{p} and recover the roots x_{1}, x_{2}

Computing square roots modulo $n=p q$

- Given $n=p \cdot q$ for known primes p, q, and given $\alpha \in \mathrm{QR}_{n}$, we want to find β such that $\beta^{2}=\alpha(\bmod n)$
- First solve modulo p and q separately

$$
\left\{\begin{array}{l}
\left(\beta_{p}\right)^{2}=\alpha \quad(\bmod p) \\
\left(\beta_{q}\right)^{2}=\alpha(\bmod q)
\end{array}\right.
$$

- Solve the simultaneous congruence

$$
\begin{cases}\beta=\beta_{p} & (\bmod p) \\ \beta=\beta_{q} & (\bmod q)\end{cases}
$$

using the Chinese Reminder Theorem.

