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Summary

Basic algorithms for computing with large integers

Addition, subtraction, multiplication, division with reminder
Modular exponentiation

Probabilistic primality testing

How to generate large primes efficiently for RSA
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Computing with large integers

Limited precision by word size of CPU

32 bits or 64 bits. Computing with values < 232 or < 264

Computing with large integers :

One represents the big integers in base B in an array, with a
bit sign.

a = ± · · ·

One implements addition, multiplication, division on such
arrays.

Existing libraries :

GMP: www.swox.com/gmp
NTL: www.shoup.net
Some parts written in assembly
for better efficiency.
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Representation of large integers

Representing large integers :

An integer is represented as an array of digits in base B, with a
sign bit.

a = ±
k−1∑
i=0

aiB
i = ±(ak−1 . . . a0)B

with 0 ≤ ai < B.
If a 6= 0, we must have ak−1 6= 0.

Choice of B

One generally takes B = 2v for some v .
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Algorithms for large integers

Here we describe algorithms for positive integers

Can be easily adapted to signed integers

Low-level arithmetic operations

We assume that our programming language can do low-level
addition, subtraction, multiplication and integer division
with integers of absolute value < B2.

a = ±
k−1∑
i=0

aiB
i = ±(ak−1 . . . a0)B

Example: C programming language

With type unsigned long int

on a 64-bit computer, take B = 232

More efficient implementations are
possible
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Algorithms for large integers

Here we describe algorithms for positive integers

Can be easily adapted to signed integers

Low-level arithmetic operations

We assume that our programming language can do low-level
addition, subtraction, multiplication and integer division
with integers of absolute value < B2.

a = ±
k−1∑
i=0

aiB
i = ±(ak−1 . . . a0)B

Example: C programming language

With type unsigned long int

on a 64-bit computer, take B = 232

More efficient implementations are
possible
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Addition

Computing c = a + b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k ≥ ` ≥ 1.
Let c = (ckck−1 . . . c0)

carry ← 0
for i = 0 to `− 1 do

tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

In every loop iteration

0 ≤ tmp ≤ 2B − 1, carry ∈ {0, 1}.
Complexity: O(k)
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Addition

Computing c = a + b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k ≥ ` ≥ 1.
Let c = (ckck−1 . . . c0)

carry ← 0
for i = 0 to `− 1 do

tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

In every loop iteration

0 ≤ tmp ≤ 2B − 1, carry ∈ {0, 1}.
Complexity: O(k)
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Addition: example in base B = 10

→ carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci

i tmp carry 0
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Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do

→ tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci

i 0 tmp 12 carry 0
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Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry

→ carry ← btmp/Bc; ci ← tmp mod B
for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 2

i 0 tmp 12 carry 1
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Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do

→ tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 2

i 1 tmp 13 carry 1
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Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry

→ carry ← btmp/Bc; ci ← tmp mod B
for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 3 2

i 1 tmp 13 carry 1
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Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
→ tmp ← ai + carry

carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 3 2

i 2 tmp 7 carry 1
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Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry

→ carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 7 3 2

i 2 tmp 7 carry 0
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Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

→ ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 0 7 3 2

i tmp 7 carry 0
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Subtraction

Same algorithm as addition, with ai + bi replaced by ai − bi
Computing c = a− b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k ≥ ` ≥ 1.
Let c = (ckck−1 . . . c0)
carry ← 0
for i = 0 to `− 1 do

tmp ← ai − bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

In every loop iteration

−B ≤ tmp ≤ B − 1, carry ∈ {−1, 0}.
If a ≥ b then ck = 0, otherwise ck = −1.

If ck = −1, compute c ′ = b − a and
let c := −c ′.
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Subtraction

Same algorithm as addition, with ai + bi replaced by ai − bi
Computing c = a− b with a, b > 0
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let c := −c ′.

Jean-Sébastien Coron Computing with large integers



Subtraction

Same algorithm as addition, with ai + bi replaced by ai − bi
Computing c = a− b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k ≥ ` ≥ 1.
Let c = (ckck−1 . . . c0)
carry ← 0
for i = 0 to `− 1 do
tmp ← ai − bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

In every loop iteration

−B ≤ tmp ≤ B − 1, carry ∈ {−1, 0}.
If a ≥ b then ck = 0, otherwise ck = −1.

If ck = −1, compute c ′ = b − a and
let c := −c ′.
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Multiplication

Schoolbook method
5 3 2

× 8 3 5

2 6 6 0
1 5 9 6

4 2 5 6

4 4 4 2 2 0

Drawback: storage of intermediate results

Space complexity O(n2) for n digits

We can do much better by accumulating
the intermediate results
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Multiplication

Computing c = a · b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k, ` ≥ 1. Let
c = (ck+`−1 . . . c0)
carry ← 0
for i = 0 to k + `− 1 do
ci ← 0

for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry

In every loop iteration

0 ≤ tmp ≤ B2 − 1, 0 ≤ carry ≤ B − 1.

Complexity: O(k · `)
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Multiplication

Computing c = a · b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k, ` ≥ 1. Let
c = (ck+`−1 . . . c0)
carry ← 0
for i = 0 to k + `− 1 do
ci ← 0

for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry

In every loop iteration

0 ≤ tmp ≤ B2 − 1, 0 ≤ carry ≤ B − 1.

Complexity: O(k · `)
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Multiplication: example in base B = 10

→ carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry

ai 3 7 k = 2

bi 8 5 ` = 2

ci

i j tmp carry 0
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Multiplication: example in base B = 10

carry ← 0
→ for i = 0 to k + `− 1 do ci ← 0

for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry

ai 3 7 k = 2

bi 8 5 ` = 2

ci 0 0 0 0

i j tmp carry 0
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do

→ carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

bi 8 5 ` = 2

ci 0 0 0 0

i 0 j tmp carry 0
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do

→ tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 0 0 0

i 0 j 0 tmp 35 carry 0
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry

→ carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 0 0 5

i 0 j 0 tmp 35 carry 3
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do

→ tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 0 0 5

i 0 j 1 tmp 59 carry 3
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry

→ carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 0 9 5

i 0 j 1 tmp 59 carry 5
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

→ ci+` ← carry
↓

ai 3 7 k = 2

bi 8 5 ` = 2

ci 0 5 9 5

i 0 j tmp 59 carry 5
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do

→ carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

bi 8 5 ` = 2

ci 0 5 9 5

i 1 j tmp 59 carry 0
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do

→ tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 5 9 5

i 1 j 0 tmp 24 carry 0
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry

→ carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 5 4 5

i 1 j 0 tmp 24 carry 2
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do

→ tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 5 4 5

i 1 j 1 tmp 31 carry 2
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry

→ carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 1 4 5

i 1 j 1 tmp 31 carry 3
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Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

→ ci+` ← carry

ai 3 7 k = 2

bi 8 5 ` = 2

ci 3 1 4 5

i 1 j tmp 31 carry 3
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Division with remainder

Euclidean division

Given a ≥ 0 and b > 0, compute q and r such that

a = b · q + r , 0 ≤ r < b

Algorithm overview
Input: a = (ak−1 . . . a0)B and b = (b`−1 . . . b0)B with b`−1 6= 0.
Output: q = (qm−1 . . . q0)B with m := k − `+ 1, and r
r ← a
for i = m − 1 downto 0 do
qi ← br/(B ib)c
r ← r − B i · qi · b

output (q, r)
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Division with reminder

Euclidean division:
Input: a = (ak−1 . . . a0)B and b = (b`−1 . . . b0)B with b`−1 6= 0.
Output: q = (qm−1 . . . q0)B with m := k − `+ 1, and r
r ← a
for i = m − 1 downto 0 do
qi ← br/(B ib)c
r ← r − B i · qi · b

output (q, r)

Property

One can show inductively that 0 ≤ r < B i · b after step i
Therefore, 0 ≤ r < b eventually.
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Division with reminder

Euclidean division:
Input: a = (ak−1 . . . a0)B and b = (b`−1 . . . b0)B with b`−1 6= 0.
Output: q = (qm−1 . . . q0)B with m := k − `+ 1, and r
r ← a
for i = m − 1 downto 0 do
qi ← br/(B ib)c
r ← r − B i · qi · b

output (q, r)

How to compute qi = br/(B i · b)c
Test all possible values of 0 ≤ qi < B
Not efficient, except if B is small.
Possible to do much better, by predicting qi from the most
significant digits of r and b;
see Shoup’s book.

Binary Euclidean division algorithm

We assume B = 2v and first convert
a, b to binary representation (B = 2)
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Division with reminder

Euclidean division:
Input: a = (ak−1 . . . a0)B and b = (b`−1 . . . b0)B with b`−1 6= 0.
Output: q = (qm−1 . . . q0)B with m := k − `+ 1, and r
r ← a
for i = m − 1 downto 0 do
qi ← br/(B ib)c
r ← r − B i · qi · b

output (q, r)

How to compute qi = br/(B i · b)c
Test all possible values of 0 ≤ qi < B
Not efficient, except if B is small.
Possible to do much better, by predicting qi from the most
significant digits of r and b;
see Shoup’s book.

Binary Euclidean division algorithm

We assume B = 2v and first convert
a, b to binary representation (B = 2)
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Binary Euclidean division

Input: a = (ak−1 . . . a0)2 and b = (b`−1 . . . b0)2 with
a ≥ b > 0 and b`−1 = 1.
Output: (q, r)
q ← 0, r ← a, c ← 2max(0,k−`) · b
for i = 0 to max(0, k − `) do

q ← 2 · q
if r ≥ c then

r ← r − c
q ← q + 1

c ← c/2

Return (q, r)

Complexity: O(` · (k − `+ 1))
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Binary Euclidean division

Input: a = (ak−1 . . . a0)2 and b = (b`−1 . . . b0)2 with
a ≥ b > 0 and b`−1 = 1.
Output: (q, r)
q ← 0, r ← a, c ← 2max(0,k−`) · b
for i = 0 to max(0, k − `) do

q ← 2 · q
if r ≥ c then

r ← r − c
q ← q + 1

c ← c/2

Return (q, r)

Complexity: O(` · (k − `+ 1))
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Summary

For a ∈ Z, let len(a) be the number of bits in the binary
representation of |a|:

len(a) = blog2 |a|c+ 1 if a 6= 0
len(0) = 1

2len(a)−1 ≤ a < 2len(a) for a > 0

Let a and b be two arbitrary integers

We can compute a± b in time O(len(a) + len(b))
We can compute a · b in time O(len(a) len(b))
We can compute the quotient q and the remainder r in
a = b · q + r in time O(len(b) len(q))

Jean-Sébastien Coron Computing with large integers



Summary

For a ∈ Z, let len(a) be the number of bits in the binary
representation of |a|:

len(a) = blog2 |a|c+ 1 if a 6= 0
len(0) = 1

2len(a)−1 ≤ a < 2len(a) for a > 0

Let a and b be two arbitrary integers

We can compute a± b in time O(len(a) + len(b))
We can compute a · b in time O(len(a) len(b))
We can compute the quotient q and the remainder r in
a = b · q + r in time O(len(b) len(q))
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Modular exponentiation

We want to compute c = ab (mod n).
Example: RSA

c = me (mod n) where m is the message, e the public
exponent, and n the modulus.

Naive method:

Multiplying a in total b times by itself modulo n
Very slow: if b is 100 bits, roughly 2100 multiplications !

Example: compute b = a16 (mod n)

b = a · a · . . . · a · a (mod n) : 15 multiplications
b = (((a2)2)2)2 (mod n) : 4 multiplications
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Square and multiply algorithm

Let b = (b`−1 . . . b0)2 the binary representation of b

b =
`−1∑
i=0

bi · 2i

Square and multiply algorithm :

Input : a, b and n
Output : ab (mod n)
c ← 1
for i = `− 1 down to 0 do
c ← c2 (mod n)
if bi = 1 then c ← c · a (mod n)

Output c

Complexity: O(len(n)3)
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Analysis

Let Bi be the integer with binary representation (b`−1 . . . bi )2,
and let

ci = aBi (mod n)

Initialization {
B` = 0

c` = 1
Recursive step{

Bi = 2 · Bi+1 + bi

ci = (ci+1)2 · abi (mod n)

Final step {
B0 = b

c0 = ab (mod n)
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Computing in Zn

Computing a + b mod n

First compute a + b in Z, then reduce modulo n
Complexity: O(len(n))

Computing a · b mod n

First compute a · b in Z, then reduce modulo n
Complexity: O(len(n)2)

Computing ab mod n

Complexity: O(len(n)3)
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Primality Testing

Motivation for prime generation:

Generate the primes p and q in RSA.
p and q must be large: at least 512 bits.

Goal of primality testing:

Given an integer n, determine whether n is prime or composite.

Simplest algorithm: trial division.

Test if n is divisible by 2, 3, 4, 5,... We can stop at
√
n.

Algorithm determines if n is prime or composite, and outputs
the factors of n if n is composite.
Very inefficient algorithm

Requires '
√
n arithmetic operations.

If n has 256 bits, then 2128 arithmetic
operations. If 230 operations/s, this
takes 1022 years !
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Primality Testing

Motivation for prime generation:

Generate the primes p and q in RSA.
p and q must be large: at least 512 bits.

Goal of primality testing:

Given an integer n, determine whether n is prime or composite.

Simplest algorithm: trial division.

Test if n is divisible by 2, 3, 4, 5,... We can stop at
√
n.

Algorithm determines if n is prime or composite, and outputs
the factors of n if n is composite.
Very inefficient algorithm

Requires '
√
n arithmetic operations.

If n has 256 bits, then 2128 arithmetic
operations. If 230 operations/s, this
takes 1022 years !
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Probabilistic primality testing

Goal: describe an efficient probabilistic primality test.

Can test primality for a 512-bit integer n in less than a second.

Probabilistic primality testing.

The algorithm does not find the prime factors of n when n is
composite.
The algorithm may make a mistake (pretend that an integer n
is prime whereas it is composite).
But the mistake can be made arbitrarily small (e.g. < 2−100),
so this makes no difference in practice.
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Distribution of prime numbers

Let π(x) be the number of primes in the interval [2, x ].

Theorem (Prime number theorem)

π(x) ∼ x/ log x .

Consequence:

A random integer between 2 and x is prime with probability
' 1/ log x
A random n-bit integer is prime with probability

1

log 2
· 1

n

Prime numbers are relatively frequent
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The Fermat test

Fermat’s little theorem

If n is prime and a is an integer between 1 and n − 1, then
an−1 ≡ 1 (mod n).
Therefore, if the primality of n is unknown, finding
a ∈ [1, n − 1] such that an−1 6= 1 (mod n) proves that n is
composite.

Fermat primality test with security parameter t.

For i = 1 to t do
Choose a random a ∈ [2, n − 2]
Compute r = an−1 mod n
If r 6= 1 then return “composite”

Return “prime’

Complexity: O(t · log3 n)
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Analysis of Fermat’s test

Let Ln = {a ∈ [1, n − 1] : an−1 ≡ 1 (mod n)}
Theorem:

If n is prime, then Ln = Z∗n. If n is composite and Ln ( Z∗n,
then |Ln| ≤ (n − 1)/2.

Proof:

If n is prime, Ln = Z∗n from Fermat.
If n is composite, since Ln is a sub-group of Z∗n and the order
of a subgroup divides the order of the group, |Z∗n| = m · |Ln|
for some integer m, with m > 1 since by assumption Ln ( Z∗n

|Ln| =
1

m
|Z∗n| ≤

1

2
|Z∗n| ≤

n − 1

2
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Analysis of Fermat’s test

If n is composite and Ln ( Z∗n
then an−1 = 1 (mod n) with probability at most 1/2 for a
random a ∈ [2, n − 2].
The algorithm outputs “prime” wih probability at most 2−t .

Unfortunately, there are odd composite numbers n such that
Ln = Z∗n.

Such numbers are called Carmichael numbers. The smallest
Carmichael number is 561.
Carmichael numbers are rare, but there are an infinite number
of them, so we cannot ignore them.
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The Miller-Rabin test

The Miller-Rabin test is a variant of Fermat test with a
different Ln. Write n − 1 = m2h for odd m.

L′n = {a ∈ Z∗n : am2h = 1 and

for j = 0, . . . , h − 1, am2j+1
= 1 implies am2j = ±1}

Illustration for a ∈ L′n
j 0 1 2 · · · h − 2 h − 1 h

am2j

1 1 1 · · · 1 1 1
-1 1 1 · · · 1 1 1
X -1 1 · · · 1 1 1
X X X · · · X -1 1

Equivalently

L′n = {a ∈ Z∗n : am = 1 or

am2j = −1 for some

0 ≤ j ≤ h − 1}
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Miller-Rabin test

L′n = {a ∈ Z∗n : am2h = 1 and

for j = 0, . . . , h − 1, am2j+1
= 1 implies am2j = ±1}

where n − 1 = m2h for odd m.

Theorem

If n is prime, then L′n = Z∗n
If n is composite, then |L′n| ≤ (n − 1)/4

Proof for n prime

Let a ∈ Z∗n. By Fermat, am·2
h

= an−1 = 1 (mod n)

If am2j+1

= 1 for some 0 ≤ j ≤ h − 1, let β = am2j

. Since

β2 = am2j+1

= 1, then β = ±1.

because a polynomial of degree d has
at most d roots modulo a prime.

Therefore a ∈ L′n.
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The Miller-Rabin test

Algorithm 1 Testing whether α ∈ L′n

1: Write n − 1 = 2h ·m for odd m.
2: β ← αm

3: if β = 1 then return true
4: for j = 1 to h − 1 do
5: if β = −1 then return true
6: if β = +1 then return false
7: β ← β2

8: end for
9: return false

Algorithm 2 Miller-Rabin test of primality

Input: An odd integer n, and t ∈ Z.
1: repeat t times
2: Generate a random α ∈ Zn

3: if α /∈ L′n return false
4: return true
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The Miller-Rabin test

Algorithm 3 Testing whether α ∈ L′n

1: Write n − 1 = 2h ·m for odd m.
2: β ← αm

3: if β = 1 then return true
4: for j = 1 to h − 1 do
5: if β = −1 then return true
6: if β = +1 then return false
7: β ← β2

8: end for
9: return false

Algorithm 4 Miller-Rabin test of primality

Input: An odd integer n, and t ∈ Z.
1: repeat t times
2: Generate a random α ∈ Zn

3: if α /∈ L′n return false
4: return true
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The Miller-Rabin test

Property

If n is prime, then the Miller-Rabin test always declares n as
prime.
If n ≥ 3 is composite, then the probability that the

Miller-Rabin test outputs “prime” is less than
(

1
4

)t
Most widely used test in practice.

With t = 40, error probabitility less than 2−80. Much less than
the probability of a hardware failure.
Can test the primality of a 512-bit integer in less than a
second.
Complexity: O(t · log3 n)
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Random prime number generation

To generate a random prime integer of size ` bits

Generate a random integer n of size ` bits
Test its primality with Miller-Rabin.
If n is declared prime, output n, otherwise generate another n
again.

Complexity

A `-bit integer is prime with probability Ω(1/`)
therefore O(`) trials are necessary.
Each primality test takes O(t · `3) time, so complexity O(t · `4)
If a number is composite, only a constant number of
Miller-Rabin tests will be required to
discard it on average.
complexity O(`4 + t · `3).
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Jean-Sébastien Coron Computing with large integers


