
Computing with large integers

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Computing with large integers

Summary

Basic algorithms for computing with large integers

Addition, subtraction, multiplication, division with reminder
Modular exponentiation

Probabilistic primality testing

How to generate large primes efficiently for RSA

Jean-Sébastien Coron Computing with large integers

Computing with large integers

Limited precision by word size of CPU

32 bits or 64 bits. Computing with values < 232 or < 264

Computing with large integers :

One represents the big integers in base B in an array, with a
bit sign.

a = ± · · ·

One implements addition, multiplication, division on such
arrays.

Existing libraries :

GMP: www.swox.com/gmp
NTL: www.shoup.net
Some parts written in assembly
for better efficiency.

Jean-Sébastien Coron Computing with large integers

Representation of large integers

Representing large integers :

An integer is represented as an array of digits in base B, with a
sign bit.

a = ±
k−1∑
i=0

aiB
i = ±(ak−1 . . . a0)B

with 0 ≤ ai < B.
If a 6= 0, we must have ak−1 6= 0.

Choice of B

One generally takes B = 2v for some v .

Jean-Sébastien Coron Computing with large integers

Algorithms for large integers

Here we describe algorithms for positive integers

Can be easily adapted to signed integers

Low-level arithmetic operations

We assume that our programming language can do low-level
addition, subtraction, multiplication and integer division
with integers of absolute value < B2.

a = ±
k−1∑
i=0

aiB
i = ±(ak−1 . . . a0)B

Example: C programming language

With type unsigned long int

on a 64-bit computer, take B = 232

More efficient implementations are
possible

Jean-Sébastien Coron Computing with large integers

Algorithms for large integers

Here we describe algorithms for positive integers

Can be easily adapted to signed integers

Low-level arithmetic operations

We assume that our programming language can do low-level
addition, subtraction, multiplication and integer division
with integers of absolute value < B2.

a = ±
k−1∑
i=0

aiB
i = ±(ak−1 . . . a0)B

Example: C programming language

With type unsigned long int

on a 64-bit computer, take B = 232

More efficient implementations are
possible

Jean-Sébastien Coron Computing with large integers

Addition

Computing c = a + b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k ≥ ` ≥ 1.
Let c = (ckck−1 . . . c0)

carry ← 0
for i = 0 to `− 1 do

tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

In every loop iteration

0 ≤ tmp ≤ 2B − 1, carry ∈ {0, 1}.
Complexity: O(k)

Jean-Sébastien Coron Computing with large integers

Addition

Computing c = a + b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k ≥ ` ≥ 1.
Let c = (ckck−1 . . . c0)

carry ← 0
for i = 0 to `− 1 do

tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

In every loop iteration

0 ≤ tmp ≤ 2B − 1, carry ∈ {0, 1}.
Complexity: O(k)

Jean-Sébastien Coron Computing with large integers

Addition: example in base B = 10

→ carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci

i tmp carry 0

Jean-Sébastien Coron Computing with large integers

Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do

→ tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci

i 0 tmp 12 carry 0

Jean-Sébastien Coron Computing with large integers

Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry

→ carry ← btmp/Bc; ci ← tmp mod B
for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 2

i 0 tmp 12 carry 1

Jean-Sébastien Coron Computing with large integers

Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do

→ tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 2

i 1 tmp 13 carry 1

Jean-Sébastien Coron Computing with large integers

Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry

→ carry ← btmp/Bc; ci ← tmp mod B
for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 3 2

i 1 tmp 13 carry 1

Jean-Sébastien Coron Computing with large integers

Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
→ tmp ← ai + carry

carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 3 2

i 2 tmp 7 carry 1

Jean-Sébastien Coron Computing with large integers

Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry

→ carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 7 3 2

i 2 tmp 7 carry 0

Jean-Sébastien Coron Computing with large integers

Addition: example in base B = 10

carry ← 0
for i = 0 to `− 1 do
tmp ← ai + bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

→ ck ← carry

↓

ai 6 4 7 k = 3

bi 8 5 ` = 2

ci 0 7 3 2

i tmp 7 carry 0

Jean-Sébastien Coron Computing with large integers

Subtraction

Same algorithm as addition, with ai + bi replaced by ai − bi
Computing c = a− b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k ≥ ` ≥ 1.
Let c = (ckck−1 . . . c0)
carry ← 0
for i = 0 to `− 1 do

tmp ← ai − bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

In every loop iteration

−B ≤ tmp ≤ B − 1, carry ∈ {−1, 0}.
If a ≥ b then ck = 0, otherwise ck = −1.

If ck = −1, compute c ′ = b − a and
let c := −c ′.

Jean-Sébastien Coron Computing with large integers

Subtraction

Same algorithm as addition, with ai + bi replaced by ai − bi
Computing c = a− b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k ≥ ` ≥ 1.
Let c = (ckck−1 . . . c0)
carry ← 0
for i = 0 to `− 1 do
tmp ← ai − bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

In every loop iteration

−B ≤ tmp ≤ B − 1, carry ∈ {−1, 0}.
If a ≥ b then ck = 0, otherwise ck = −1.

If ck = −1, compute c ′ = b − a and
let c := −c ′.

Jean-Sébastien Coron Computing with large integers

Subtraction

Same algorithm as addition, with ai + bi replaced by ai − bi
Computing c = a− b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k ≥ ` ≥ 1.
Let c = (ckck−1 . . . c0)
carry ← 0
for i = 0 to `− 1 do
tmp ← ai − bi + carry
carry ← btmp/Bc; ci ← tmp mod B

for i = ` to k − 1 do
tmp ← ai + carry
carry ← btmp/Bc; ci ← tmp mod B

ck ← carry

In every loop iteration

−B ≤ tmp ≤ B − 1, carry ∈ {−1, 0}.
If a ≥ b then ck = 0, otherwise ck = −1.

If ck = −1, compute c ′ = b − a and
let c := −c ′.

Jean-Sébastien Coron Computing with large integers

Multiplication

Schoolbook method
5 3 2

× 8 3 5

2 6 6 0
1 5 9 6

4 2 5 6

4 4 4 2 2 0

Drawback: storage of intermediate results

Space complexity O(n2) for n digits

We can do much better by accumulating
the intermediate results

Jean-Sébastien Coron Computing with large integers

Multiplication

Computing c = a · b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k, ` ≥ 1. Let
c = (ck+`−1 . . . c0)
carry ← 0
for i = 0 to k + `− 1 do
ci ← 0

for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry

In every loop iteration

0 ≤ tmp ≤ B2 − 1, 0 ≤ carry ≤ B − 1.

Complexity: O(k · `)

Jean-Sébastien Coron Computing with large integers

Multiplication

Computing c = a · b with a, b > 0

Let a = (ak−1 . . . a0) and b = (b`−1 . . . b0) with k, ` ≥ 1. Let
c = (ck+`−1 . . . c0)
carry ← 0
for i = 0 to k + `− 1 do
ci ← 0

for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry

In every loop iteration

0 ≤ tmp ≤ B2 − 1, 0 ≤ carry ≤ B − 1.

Complexity: O(k · `)

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

→ carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry

ai 3 7 k = 2

bi 8 5 ` = 2

ci

i j tmp carry 0

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
→ for i = 0 to k + `− 1 do ci ← 0

for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry

ai 3 7 k = 2

bi 8 5 ` = 2

ci 0 0 0 0

i j tmp carry 0

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do

→ carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

bi 8 5 ` = 2

ci 0 0 0 0

i 0 j tmp carry 0

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do

→ tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 0 0 0

i 0 j 0 tmp 35 carry 0

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry

→ carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 0 0 5

i 0 j 0 tmp 35 carry 3

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do

→ tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 0 0 5

i 0 j 1 tmp 59 carry 3

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry

→ carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 0 9 5

i 0 j 1 tmp 59 carry 5

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

→ ci+` ← carry
↓

ai 3 7 k = 2

bi 8 5 ` = 2

ci 0 5 9 5

i 0 j tmp 59 carry 5

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do

→ carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

bi 8 5 ` = 2

ci 0 5 9 5

i 1 j tmp 59 carry 0

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do

→ tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 5 9 5

i 1 j 0 tmp 24 carry 0

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry

→ carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 5 4 5

i 1 j 0 tmp 24 carry 2

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do

→ tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 5 4 5

i 1 j 1 tmp 31 carry 2

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry

→ carry ← btmp/Bc; ci+j ← tmp mod B

ci+` ← carry
↓

ai 3 7 k = 2

↓
bi 8 5 ` = 2

ci 0 1 4 5

i 1 j 1 tmp 31 carry 3

Jean-Sébastien Coron Computing with large integers

Multiplication: example in base B = 10

carry ← 0
for i = 0 to k + `− 1 do ci ← 0
for i = 0 to k − 1 do
carry ← 0
for j = 0 to `− 1 do
tmp ← ai · bj + ci+j + carry
carry ← btmp/Bc; ci+j ← tmp mod B

→ ci+` ← carry

ai 3 7 k = 2

bi 8 5 ` = 2

ci 3 1 4 5

i 1 j tmp 31 carry 3

Jean-Sébastien Coron Computing with large integers

Division with remainder

Euclidean division

Given a ≥ 0 and b > 0, compute q and r such that

a = b · q + r , 0 ≤ r < b

Algorithm overview
Input: a = (ak−1 . . . a0)B and b = (b`−1 . . . b0)B with b`−1 6= 0.
Output: q = (qm−1 . . . q0)B with m := k − `+ 1, and r
r ← a
for i = m − 1 downto 0 do
qi ← br/(B ib)c
r ← r − B i · qi · b

output (q, r)

Jean-Sébastien Coron Computing with large integers

Division with reminder

Euclidean division:
Input: a = (ak−1 . . . a0)B and b = (b`−1 . . . b0)B with b`−1 6= 0.
Output: q = (qm−1 . . . q0)B with m := k − `+ 1, and r
r ← a
for i = m − 1 downto 0 do
qi ← br/(B ib)c
r ← r − B i · qi · b

output (q, r)

Property

One can show inductively that 0 ≤ r < B i · b after step i
Therefore, 0 ≤ r < b eventually.

Jean-Sébastien Coron Computing with large integers

Division with reminder

Euclidean division:
Input: a = (ak−1 . . . a0)B and b = (b`−1 . . . b0)B with b`−1 6= 0.
Output: q = (qm−1 . . . q0)B with m := k − `+ 1, and r
r ← a
for i = m − 1 downto 0 do
qi ← br/(B ib)c
r ← r − B i · qi · b

output (q, r)

How to compute qi = br/(B i · b)c
Test all possible values of 0 ≤ qi < B
Not efficient, except if B is small.
Possible to do much better, by predicting qi from the most
significant digits of r and b;
see Shoup’s book.

Binary Euclidean division algorithm

We assume B = 2v and first convert
a, b to binary representation (B = 2)

Jean-Sébastien Coron Computing with large integers

Division with reminder

Euclidean division:
Input: a = (ak−1 . . . a0)B and b = (b`−1 . . . b0)B with b`−1 6= 0.
Output: q = (qm−1 . . . q0)B with m := k − `+ 1, and r
r ← a
for i = m − 1 downto 0 do
qi ← br/(B ib)c
r ← r − B i · qi · b

output (q, r)

How to compute qi = br/(B i · b)c
Test all possible values of 0 ≤ qi < B
Not efficient, except if B is small.
Possible to do much better, by predicting qi from the most
significant digits of r and b;
see Shoup’s book.

Binary Euclidean division algorithm

We assume B = 2v and first convert
a, b to binary representation (B = 2)

Jean-Sébastien Coron Computing with large integers

Binary Euclidean division

Input: a = (ak−1 . . . a0)2 and b = (b`−1 . . . b0)2 with
a ≥ b > 0 and b`−1 = 1.
Output: (q, r)
q ← 0, r ← a, c ← 2max(0,k−`) · b
for i = 0 to max(0, k − `) do

q ← 2 · q
if r ≥ c then

r ← r − c
q ← q + 1

c ← c/2

Return (q, r)

Complexity: O(` · (k − `+ 1))

Jean-Sébastien Coron Computing with large integers

Binary Euclidean division

Input: a = (ak−1 . . . a0)2 and b = (b`−1 . . . b0)2 with
a ≥ b > 0 and b`−1 = 1.
Output: (q, r)
q ← 0, r ← a, c ← 2max(0,k−`) · b
for i = 0 to max(0, k − `) do

q ← 2 · q
if r ≥ c then

r ← r − c
q ← q + 1

c ← c/2

Return (q, r)

Complexity: O(` · (k − `+ 1))

Jean-Sébastien Coron Computing with large integers

Summary

For a ∈ Z, let len(a) be the number of bits in the binary
representation of |a|:

len(a) = blog2 |a|c+ 1 if a 6= 0
len(0) = 1

2len(a)−1 ≤ a < 2len(a) for a > 0

Let a and b be two arbitrary integers

We can compute a± b in time O(len(a) + len(b))
We can compute a · b in time O(len(a) len(b))
We can compute the quotient q and the remainder r in
a = b · q + r in time O(len(b) len(q))

Jean-Sébastien Coron Computing with large integers

Summary

For a ∈ Z, let len(a) be the number of bits in the binary
representation of |a|:

len(a) = blog2 |a|c+ 1 if a 6= 0
len(0) = 1

2len(a)−1 ≤ a < 2len(a) for a > 0

Let a and b be two arbitrary integers

We can compute a± b in time O(len(a) + len(b))
We can compute a · b in time O(len(a) len(b))
We can compute the quotient q and the remainder r in
a = b · q + r in time O(len(b) len(q))

Jean-Sébastien Coron Computing with large integers

Modular exponentiation

We want to compute c = ab (mod n).
Example: RSA

c = me (mod n) where m is the message, e the public
exponent, and n the modulus.

Naive method:

Multiplying a in total b times by itself modulo n
Very slow: if b is 100 bits, roughly 2100 multiplications !

Example: compute b = a16 (mod n)

b = a · a · . . . · a · a (mod n) : 15 multiplications
b = (((a2)2)2)2 (mod n) : 4 multiplications

Jean-Sébastien Coron Computing with large integers

Square and multiply algorithm

Let b = (b`−1 . . . b0)2 the binary representation of b

b =
`−1∑
i=0

bi · 2i

Square and multiply algorithm :

Input : a, b and n
Output : ab (mod n)
c ← 1
for i = `− 1 down to 0 do
c ← c2 (mod n)
if bi = 1 then c ← c · a (mod n)

Output c

Complexity: O(len(n)3)

Jean-Sébastien Coron Computing with large integers

Analysis

Let Bi be the integer with binary representation (b`−1 . . . bi)2,
and let

ci = aBi (mod n)

Initialization {
B` = 0

c` = 1
Recursive step{

Bi = 2 · Bi+1 + bi

ci = (ci+1)2 · abi (mod n)

Final step {
B0 = b

c0 = ab (mod n)

Jean-Sébastien Coron Computing with large integers

Computing in Zn

Computing a + b mod n

First compute a + b in Z, then reduce modulo n
Complexity: O(len(n))

Computing a · b mod n

First compute a · b in Z, then reduce modulo n
Complexity: O(len(n)2)

Computing ab mod n

Complexity: O(len(n)3)

Jean-Sébastien Coron Computing with large integers

Primality Testing

Motivation for prime generation:

Generate the primes p and q in RSA.
p and q must be large: at least 512 bits.

Goal of primality testing:

Given an integer n, determine whether n is prime or composite.

Simplest algorithm: trial division.

Test if n is divisible by 2, 3, 4, 5,... We can stop at
√
n.

Algorithm determines if n is prime or composite, and outputs
the factors of n if n is composite.
Very inefficient algorithm

Requires '
√
n arithmetic operations.

If n has 256 bits, then 2128 arithmetic
operations. If 230 operations/s, this
takes 1022 years !

Jean-Sébastien Coron Computing with large integers

Primality Testing

Motivation for prime generation:

Generate the primes p and q in RSA.
p and q must be large: at least 512 bits.

Goal of primality testing:

Given an integer n, determine whether n is prime or composite.

Simplest algorithm: trial division.

Test if n is divisible by 2, 3, 4, 5,... We can stop at
√
n.

Algorithm determines if n is prime or composite, and outputs
the factors of n if n is composite.
Very inefficient algorithm

Requires '
√
n arithmetic operations.

If n has 256 bits, then 2128 arithmetic
operations. If 230 operations/s, this
takes 1022 years !

Jean-Sébastien Coron Computing with large integers

Probabilistic primality testing

Goal: describe an efficient probabilistic primality test.

Can test primality for a 512-bit integer n in less than a second.

Probabilistic primality testing.

The algorithm does not find the prime factors of n when n is
composite.
The algorithm may make a mistake (pretend that an integer n
is prime whereas it is composite).
But the mistake can be made arbitrarily small (e.g. < 2−100),
so this makes no difference in practice.

Jean-Sébastien Coron Computing with large integers

Distribution of prime numbers

Let π(x) be the number of primes in the interval [2, x].

Theorem (Prime number theorem)

π(x) ∼ x/ log x .

Consequence:

A random integer between 2 and x is prime with probability
' 1/ log x
A random n-bit integer is prime with probability

1

log 2
· 1

n

Prime numbers are relatively frequent

Jean-Sébastien Coron Computing with large integers

The Fermat test

Fermat’s little theorem

If n is prime and a is an integer between 1 and n − 1, then
an−1 ≡ 1 (mod n).
Therefore, if the primality of n is unknown, finding
a ∈ [1, n − 1] such that an−1 6= 1 (mod n) proves that n is
composite.

Fermat primality test with security parameter t.

For i = 1 to t do
Choose a random a ∈ [2, n − 2]
Compute r = an−1 mod n
If r 6= 1 then return “composite”

Return “prime’

Complexity: O(t · log3 n)

Jean-Sébastien Coron Computing with large integers

The Fermat test

Fermat’s little theorem

If n is prime and a is an integer between 1 and n − 1, then
an−1 ≡ 1 (mod n).
Therefore, if the primality of n is unknown, finding
a ∈ [1, n − 1] such that an−1 6= 1 (mod n) proves that n is
composite.

Fermat primality test with security parameter t.

For i = 1 to t do
Choose a random a ∈ [2, n − 2]
Compute r = an−1 mod n
If r 6= 1 then return “composite”

Return “prime’

Complexity: O(t · log3 n)

Jean-Sébastien Coron Computing with large integers

Analysis of Fermat’s test

Let Ln = {a ∈ [1, n − 1] : an−1 ≡ 1 (mod n)}
Theorem:

If n is prime, then Ln = Z∗n. If n is composite and Ln (Z∗n,
then |Ln| ≤ (n − 1)/2.

Proof:

If n is prime, Ln = Z∗n from Fermat.
If n is composite, since Ln is a sub-group of Z∗n and the order
of a subgroup divides the order of the group, |Z∗n| = m · |Ln|
for some integer m, with m > 1 since by assumption Ln (Z∗n

|Ln| =
1

m
|Z∗n| ≤

1

2
|Z∗n| ≤

n − 1

2

Jean-Sébastien Coron Computing with large integers

Analysis of Fermat’s test

If n is composite and Ln (Z∗n
then an−1 = 1 (mod n) with probability at most 1/2 for a
random a ∈ [2, n − 2].
The algorithm outputs “prime” wih probability at most 2−t .

Unfortunately, there are odd composite numbers n such that
Ln = Z∗n.

Such numbers are called Carmichael numbers. The smallest
Carmichael number is 561.
Carmichael numbers are rare, but there are an infinite number
of them, so we cannot ignore them.

Jean-Sébastien Coron Computing with large integers

Analysis of Fermat’s test

If n is composite and Ln (Z∗n
then an−1 = 1 (mod n) with probability at most 1/2 for a
random a ∈ [2, n − 2].
The algorithm outputs “prime” wih probability at most 2−t .

Unfortunately, there are odd composite numbers n such that
Ln = Z∗n.

Such numbers are called Carmichael numbers. The smallest
Carmichael number is 561.
Carmichael numbers are rare, but there are an infinite number
of them, so we cannot ignore them.

Jean-Sébastien Coron Computing with large integers

The Miller-Rabin test

The Miller-Rabin test is a variant of Fermat test with a
different Ln. Write n − 1 = m2h for odd m.

L′n = {a ∈ Z∗n : am2h = 1 and

for j = 0, . . . , h − 1, am2j+1
= 1 implies am2j = ±1}

Illustration for a ∈ L′n
j 0 1 2 · · · h − 2 h − 1 h

am2j

1 1 1 · · · 1 1 1
-1 1 1 · · · 1 1 1
X -1 1 · · · 1 1 1
X X X · · · X -1 1

Equivalently

L′n = {a ∈ Z∗n : am = 1 or

am2j = −1 for some

0 ≤ j ≤ h − 1}

Jean-Sébastien Coron Computing with large integers

The Miller-Rabin test

The Miller-Rabin test is a variant of Fermat test with a
different Ln. Write n − 1 = m2h for odd m.

L′n = {a ∈ Z∗n : am2h = 1 and

for j = 0, . . . , h − 1, am2j+1
= 1 implies am2j = ±1}

Illustration for a ∈ L′n
j 0 1 2 · · · h − 2 h − 1 h

am2j

1 1 1 · · · 1 1 1
-1 1 1 · · · 1 1 1
X -1 1 · · · 1 1 1
X X X · · · X -1 1

Equivalently

L′n = {a ∈ Z∗n : am = 1 or

am2j = −1 for some

0 ≤ j ≤ h − 1}

Jean-Sébastien Coron Computing with large integers

Miller-Rabin test

L′n = {a ∈ Z∗n : am2h = 1 and

for j = 0, . . . , h − 1, am2j+1
= 1 implies am2j = ±1}

where n − 1 = m2h for odd m.

Theorem

If n is prime, then L′n = Z∗n
If n is composite, then |L′n| ≤ (n − 1)/4

Proof for n prime

Let a ∈ Z∗n. By Fermat, am·2
h

= an−1 = 1 (mod n)

If am2j+1

= 1 for some 0 ≤ j ≤ h − 1, let β = am2j

. Since

β2 = am2j+1

= 1, then β = ±1.

because a polynomial of degree d has
at most d roots modulo a prime.

Therefore a ∈ L′n.

Jean-Sébastien Coron Computing with large integers

Miller-Rabin test

L′n = {a ∈ Z∗n : am2h = 1 and

for j = 0, . . . , h − 1, am2j+1
= 1 implies am2j = ±1}

where n − 1 = m2h for odd m.

Theorem

If n is prime, then L′n = Z∗n
If n is composite, then |L′n| ≤ (n − 1)/4

Proof for n prime

Let a ∈ Z∗n. By Fermat, am·2
h

= an−1 = 1 (mod n)

If am2j+1

= 1 for some 0 ≤ j ≤ h − 1, let β = am2j

. Since

β2 = am2j+1

= 1, then β = ±1.

because a polynomial of degree d has
at most d roots modulo a prime.

Therefore a ∈ L′n.

Jean-Sébastien Coron Computing with large integers

The Miller-Rabin test

Algorithm 1 Testing whether α ∈ L′n

1: Write n − 1 = 2h ·m for odd m.
2: β ← αm

3: if β = 1 then return true
4: for j = 1 to h − 1 do
5: if β = −1 then return true
6: if β = +1 then return false
7: β ← β2

8: end for
9: return false

Algorithm 2 Miller-Rabin test of primality

Input: An odd integer n, and t ∈ Z.
1: repeat t times
2: Generate a random α ∈ Zn

3: if α /∈ L′n return false
4: return true

Jean-Sébastien Coron Computing with large integers

The Miller-Rabin test

Algorithm 3 Testing whether α ∈ L′n

1: Write n − 1 = 2h ·m for odd m.
2: β ← αm

3: if β = 1 then return true
4: for j = 1 to h − 1 do
5: if β = −1 then return true
6: if β = +1 then return false
7: β ← β2

8: end for
9: return false

Algorithm 4 Miller-Rabin test of primality

Input: An odd integer n, and t ∈ Z.
1: repeat t times
2: Generate a random α ∈ Zn

3: if α /∈ L′n return false
4: return true

Jean-Sébastien Coron Computing with large integers

The Miller-Rabin test

Property

If n is prime, then the Miller-Rabin test always declares n as
prime.
If n ≥ 3 is composite, then the probability that the

Miller-Rabin test outputs “prime” is less than
(

1
4

)t
Most widely used test in practice.

With t = 40, error probabitility less than 2−80. Much less than
the probability of a hardware failure.
Can test the primality of a 512-bit integer in less than a
second.
Complexity: O(t · log3 n)

Jean-Sébastien Coron Computing with large integers

Random prime number generation

To generate a random prime integer of size ` bits

Generate a random integer n of size ` bits
Test its primality with Miller-Rabin.
If n is declared prime, output n, otherwise generate another n
again.

Complexity

A `-bit integer is prime with probability Ω(1/`)
therefore O(`) trials are necessary.
Each primality test takes O(t · `3) time, so complexity O(t · `4)
If a number is composite, only a constant number of
Miller-Rabin tests will be required to
discard it on average.
complexity O(`4 + t · `3).

Jean-Sébastien Coron Computing with large integers

Random prime number generation

To generate a random prime integer of size ` bits

Generate a random integer n of size ` bits
Test its primality with Miller-Rabin.
If n is declared prime, output n, otherwise generate another n
again.

Complexity

A `-bit integer is prime with probability Ω(1/`)
therefore O(`) trials are necessary.
Each primality test takes O(t · `3) time, so complexity O(t · `4)
If a number is composite, only a constant number of
Miller-Rabin tests will be required to
discard it on average.
complexity O(`4 + t · `3).

Jean-Sébastien Coron Computing with large integers

