Computing with large integers

Jean-Sébastien Coron

University of Luxembourg

- Basic algorithms for computing with large integers
 - Addition, subtraction, multiplication, division with reminder
 - Modular exponentiation
- Probabilistic primality testing
 - How to generate large primes efficiently for RSA

Computing with large integers

- Limited precision by word size of CPU
 - $\bullet~32$ bits or 64 bits. Computing with values $<2^{32}$ or $<2^{64}$
- Computing with large integers :
 - One represents the big integers in base *B* in an array, with a bit sign.

$$a = \pm$$

- One implements addition, multiplication, division on such arrays.
- Existing libraries :
 - GMP: www.swox.com/gmp
 - NTL: www.shoup.net
 - Some parts written in assembly for better efficiency.

< ∃ > <

- Representing large integers :
 - An integer is represented as an array of digits in base *B*, with a sign bit.

$$a=\pm\sum_{i=0}^{k-1}a_iB^i=\pm(a_{k-1}\ldots a_0)_B$$

with $0 \leq a_i < B$.

- If $a \neq 0$, we must have $a_{k-1} \neq 0$.
- Choice of B
 - One generally takes $B = 2^{v}$ for some v.

Algorithms for large integers

- Here we describe algorithms for positive integers
 - Can be easily adapted to signed integers
- Low-level arithmetic operations
 - We assume that our programming language can do low-level addition, subtraction, multiplication and integer division
 - with integers of absolute value $< B^2$.

$$a=\pm\sum_{i=0}^{k-1}a_iB^i=\pm(a_{k-1}\ldots a_0)_B$$

- Example: C programming language
 - With type unsigned long int on a 64-bit computer, take $B=2^{32}$
 - More efficient implementations are possible

★ Ξ →

Algorithms for large integers

- Here we describe algorithms for positive integers
 - Can be easily adapted to signed integers
- Low-level arithmetic operations
 - We assume that our programming language can do low-level addition, subtraction, multiplication and integer division
 - with integers of absolute value $< B^2$.

$$a=\pm\sum_{i=0}^{k-1}a_iB^i=\pm(a_{k-1}\ldots a_0)_B$$

- Example: C programming language
 - With type unsigned long int on a 64-bit computer, take $B=2^{32}$
 - More efficient implementations are possible

Addition

```
• Computing c = a + b with a, b > 0
      • Let a = (a_{k-1} \dots a_0) and b = (b_{\ell-1} \dots b_0) with k \ge \ell \ge 1.
         Let c = (c_k c_{k-1} \dots c_0)
         carry \leftarrow 0
         for i = 0 to \ell - 1 do
             tmp \leftarrow a_i + b_i + carry
             carry \leftarrow |tmp/B|; c_i \leftarrow tmp \mod B
         for i = \ell to k - 1 do
             tmp \leftarrow a_i + carry
             carry \leftarrow |tmp/B|; c_i \leftarrow tmp \mod B
          c_k \leftarrow carrv
In every loop iteration
      • 0 < tmp < 2B - 1, carry \in \{0, 1\}.
```

• Complexity: $\mathcal{O}(k)$

• • = • • = •

Addition

• Computing
$$c = a + b$$
 with $a, b > 0$
• Let $a = (a_{k-1} \dots a_0)$ and $b = (b_{\ell-1} \dots b_0)$ with $k \ge \ell \ge 1$.
Let $c = (c_k c_{k-1} \dots c_0)$
carry $\leftarrow 0$
for $i = 0$ to $\ell - 1$ do
tmp $\leftarrow a_i + b_i + carry$
carry $\leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
for $i = \ell$ to $k - 1$ do
tmp $\leftarrow a_i + carry$
carry $\leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
 $c_k \leftarrow carry$

In every loop iteration

• $0 \le tmp \le 2B - 1$, carry $\in \{0, 1\}$.

• Complexity: $\mathcal{O}(k)$

э

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$carry \leftarrow 0$$

for $i = 0$ to $\ell - 1$ do
 $\rightarrow \quad tmp \leftarrow a_i + b_i + carry$
 $carry \leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
for $i = \ell$ to $k - 1$ do
 $tmp \leftarrow a_i + carry$
 $carry \leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
 $c_k \leftarrow carry$

$$carry \leftarrow 0$$

for $i = 0$ to $\ell - 1$ do
 $tmp \leftarrow a_i + b_i + carry$
 $\rightarrow carry \leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
for $i = \ell$ to $k - 1$ do
 $tmp \leftarrow a_i + carry$
 $carry \leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
 $c_k \leftarrow carry$

$$carry \leftarrow 0$$

for $i = 0$ to $\ell - 1$ do
 $\rightarrow \quad tmp \leftarrow a_i + b_i + carry$
 $carry \leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
for $i = \ell$ to $k - 1$ do
 $tmp \leftarrow a_i + carry$
 $carry \leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
 $c_k \leftarrow carry$

$$carry \leftarrow 0$$

for $i = 0$ to $\ell - 1$ do
 $tmp \leftarrow a_i + b_i + carry$
 $\rightarrow carry \leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
for $i = \ell$ to $k - 1$ do
 $tmp \leftarrow a_i + carry$
 $carry \leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$
 $c_k \leftarrow carry$

$$carry \leftarrow 0$$

for $i = 0$ to $\ell - 1$ do
$$tmp \leftarrow a_i + b_i + carry$$

$$carry \leftarrow \lfloor tmp/B \rfloor; c_i \leftarrow tmp \mod B$$

for $i = \ell$ to $k - 1$ do
 $\rightarrow tmp \leftarrow a_i + carry$
$$carry \leftarrow \lfloor tmp/B \rfloor; c_i \leftarrow tmp \mod B$$

$$c_k \leftarrow carry$$

$$carry \leftarrow 0$$

for $i = 0$ to $\ell - 1$ do
$$tmp \leftarrow a_i + b_i + carry$$

$$carry \leftarrow \lfloor tmp/B \rfloor; c_i \leftarrow tmp \mod B$$

for $i = \ell$ to $k - 1$ do
$$tmp \leftarrow a_i + carry$$

$$\rightarrow carry \leftarrow \lfloor tmp/B \rfloor; c_i \leftarrow tmp \mod B$$

$$c_k \leftarrow carry$$

$$carry \leftarrow 0$$

for $i = 0$ to $\ell - 1$ do
$$tmp \leftarrow a_i + b_i + carry$$

$$carry \leftarrow \lfloor tmp/B \rfloor; c_i \leftarrow tmp \mod B$$

for $i = \ell$ to $k - 1$ do
$$tmp \leftarrow a_i + carry$$

$$carry \leftarrow \lfloor tmp/B \rfloor; c_i \leftarrow tmp \mod B$$

 $\rightarrow c_k \leftarrow carry$

Subtraction

```
• Same algorithm as addition, with a_i + b_i replaced by a_i - b_i
• Computing c = a - b with a, b > 0
     • Let a = (a_{k-1} \dots a_0) and b = (b_{\ell-1} \dots b_0) with k \ge \ell \ge 1.

    In every loop iteration

     • -B < tmp < B - 1, carry \in \{-1, 0\}.
• If a \ge b then c_k = 0, otherwise c_k = -1.
```

If
$$c_k = -1$$
, compute $c' = b - a$ and
let $c := -c'$.

Subtraction

- Same algorithm as addition, with $a_i + b_i$ replaced by $a_i b_i$
- Computing c = a b with a, b > 0
 - Let $a = (a_{k-1} \dots a_0)$ and $b = (b_{\ell-1} \dots b_0)$ with $k \ge \ell \ge 1$. Let $c = (c_k c_{k-1} \dots c_0)$ carry $\leftarrow 0$ for i = 0 to $\ell - 1$ do $tmp \leftarrow a_i - b_i + carry$ carry $\leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$ for $i = \ell$ to k - 1 do $tmp \leftarrow a_i + carry$ carry $\leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$ $c_k \leftarrow carry$
- In every loop iteration
 - $-B \le tmp \le B 1$, carry $\in \{-1, 0\}$.

• If $a \ge b$ then $c_k = 0$, otherwise $c_k = -1$.

• If
$$c_k = -1$$
, compute $c' = b - a$ and let $c := -c'$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Subtraction

- Same algorithm as addition, with $a_i + b_i$ replaced by $a_i b_i$
- Computing c = a b with a, b > 0
 - Let $a = (a_{k-1} \dots a_0)$ and $b = (b_{\ell-1} \dots b_0)$ with $k \ge \ell \ge 1$. Let $c = (c_k c_{k-1} \dots c_0)$ carry $\leftarrow 0$ for i = 0 to $\ell - 1$ do $tmp \leftarrow a_i - b_i + carry$ carry $\leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$ for $i = \ell$ to k - 1 do $tmp \leftarrow a_i + carry$ carry $\leftarrow \lfloor tmp/B \rfloor$; $c_i \leftarrow tmp \mod B$ $c_k \leftarrow carry$
- In every loop iteration

•
$$-B \le tmp \le B - 1$$
, carry $\in \{-1, 0\}$.

• If $a \ge b$ then $c_k = 0$, otherwise $c_k = -1$.

• If
$$c_k = -1$$
, compute $c' = b - a$ and let $c := -c'$.

伺 ト イヨ ト イヨ ト

Schoolbook method

			5	3	2
\times			8	3	5
		2	6	6	0
	1	5	9	6	
4	2	5	6		
4	4	4	2	2	0

- Drawback: storage of intermediate results
 - Space complexity $\mathcal{O}(n^2)$ for *n* digits
- We can do much better by accumulating the intermediate results

Multiplication

• Computing $c = a \cdot b$ with a, b > 0• Let $a = (a_{k-1} \dots a_0)$ and $b = (b_{\ell-1} \dots b_0)$ with $k, \ell \ge 1$. Let $c = (c_{k+\ell-1} \dots c_0)$ carry $\leftarrow 0$ for i = 0 to $k + \ell - 1$ do $c_i \leftarrow 0$ for i = 0 to k - 1 do carry $\leftarrow 0$ for i = 0 to $\ell - 1$ do $tmp \leftarrow a_i \cdot b_i + c_{i+i} + c_{arry}$ carry $\leftarrow |tmp/B|$; $c_{i+i} \leftarrow tmp \mod B$ $c_{i+\ell} \leftarrow carry$ In every loop iteration • $0 < tmp < B^2 - 1$. 0 < carrv < B - 1.

• Complexity: $\mathcal{O}(k \cdot \ell)$

Multiplication

• Computing $c = a \cdot b$ with a, b > 0• Let $a = (a_{k-1} \dots a_0)$ and $b = (b_{\ell-1} \dots b_0)$ with $k, \ell \ge 1$. Let $c = (c_{k+\ell-1} \dots c_0)$ carry $\leftarrow 0$ for i = 0 to $k + \ell - 1$ do $c_i \leftarrow 0$ for i = 0 to k - 1 do carry $\leftarrow 0$ for i = 0 to $\ell - 1$ do $tmp \leftarrow a_i \cdot b_i + c_{i+i} + c_{arry}$ carry $\leftarrow |tmp/B|$; $c_{i+i} \leftarrow tmp \mod B$ $c_{i+\ell} \leftarrow carry$

In every loop iteration

•
$$0 \leq tmp \leq B^2 - 1$$
, $0 \leq carry \leq B - 1$.

• Complexity: $\mathcal{O}(k \cdot \ell)$

э

★ ∃ ► < ∃ ►</p>

$$carry \leftarrow 0$$

 \rightarrow for $i = 0$ to $k + \ell - 1$ do $c_i \leftarrow 0$
for $i = 0$ to $k - 1$ do
 $carry \leftarrow 0$
for $j = 0$ to $\ell - 1$ do
 $tmp \leftarrow a_i \cdot b_j + c_{i+j} + carry$
 $carry \leftarrow \lfloor tmp/B \rfloor; c_{i+j} \leftarrow tmp \mod B$
 $c_{i+\ell} \leftarrow carry$

э

★ ∃ ► < ∃ ►</p>

$$\begin{array}{c} carry \leftarrow 0\\ \text{for } i = 0 \text{ to } k + \ell - 1 \text{ do } c_i \leftarrow 0\\ \text{for } i = 0 \text{ to } k - 1 \text{ do} \\ \rightarrow \quad carry \leftarrow 0\\ \text{for } j = 0 \text{ to } \ell - 1 \text{ do} \\ tmp \leftarrow a_i \cdot b_j + c_{i+j} + carry\\ carry \leftarrow \lfloor tmp/B \rfloor; \ c_{i+j} \leftarrow tmp \text{ mod } B\\ c_{i+\ell} \leftarrow carry \\ a_i & \boxed{3 \ 7} \quad k = 2\\ b_i & \boxed{8 \ 5} \quad \ell = 2\\ c_i & \boxed{0 \ 0 \ 0} \quad 0\\ i & \boxed{0} \quad j & tmp & carry & \boxed{0} \end{array}$$

æ

æ

2

æ

æ

æ

i 0 *j tmp* 59 *carry* 5

・ロト ・回ト ・ヨト ・ヨト

æ

$$\begin{array}{c} carry \leftarrow 0\\ \text{for } i = 0 \text{ to } k + \ell - 1 \text{ do } c_i \leftarrow 0\\ \text{for } i = 0 \text{ to } k - 1 \text{ do} \\ \rightarrow \quad carry \leftarrow 0\\ \text{for } j = 0 \text{ to } \ell - 1 \text{ do} \\ tmp \leftarrow a_i \cdot b_j + c_{i+j} + carry\\ carry \leftarrow \lfloor tmp/B \rfloor; \ c_{i+j} \leftarrow tmp \text{ mod } B\\ c_{i+\ell} \leftarrow carry \\ a_i & \boxed{3 \ 7} \quad k = 2\\ b_i & \boxed{8 \ 5} \quad \ell = 2\\ c_i & \boxed{0 \ 5 \ 9 \ 5} \\ i & \boxed{1} \quad j & tmp & \boxed{59} \quad carry & \boxed{0} \end{array}$$

æ

$$carry \leftarrow 0$$

for $i = 0$ to $k + \ell - 1$ do $c_i \leftarrow 0$
for $i = 0$ to $k - 1$ do
$$carry \leftarrow 0$$

for $j = 0$ to $\ell - 1$ do
$$\rightarrow \quad tmp \leftarrow a_i \cdot b_j + c_{i+j} + carry$$

$$carry \leftarrow \lfloor tmp/B \rfloor; c_{i+j} \leftarrow tmp \mod B$$

$$c_{i+\ell} \leftarrow carry$$

$$a_i \qquad 3 7 \qquad k = 2$$

$$b_i \qquad 8 5 \qquad \ell = 2$$

$$c_i \qquad 0 5 9 5$$

$$i \qquad 1 \qquad j \qquad 0 \qquad tmp \qquad 24 \qquad carry \qquad 0$$

æ

2

æ

æ

▶ ▲ 문 ▶ ▲ 문 ▶

$$\begin{array}{c} carry \leftarrow 0\\ \text{for } i = 0 \text{ to } k + \ell - 1 \text{ do } c_i \leftarrow 0\\ \text{for } i = 0 \text{ to } k - 1 \text{ do}\\ carry \leftarrow 0\\ \text{for } j = 0 \text{ to } \ell - 1 \text{ do}\\ tmp \leftarrow a_i \cdot b_j + c_{i+j} + carry\\ \rightarrow & carry \leftarrow \lfloor tmp/B \rfloor; \ c_{i+j} \leftarrow tmp \text{ mod } B\\ c_{i+\ell} \leftarrow carry\\ a_i & \boxed{3 \ 7} \quad k = 2\\ b_i & \boxed{8 \ 5} \quad \ell = 2\\ c_i & \boxed{0 \ 1 \ 4 \ 5}\\ i & \boxed{1} \quad j \ \boxed{1} \quad tmp \ \boxed{31} \quad carry \ \boxed{3}\\ \end{array}$$

æ

$$carry \leftarrow 0$$

for $i = 0$ to $k + \ell - 1$ do $c_i \leftarrow 0$
for $i = 0$ to $k - 1$ do
 $carry \leftarrow 0$
for $j = 0$ to $\ell - 1$ do
 $tmp \leftarrow a_i \cdot b_j + c_{i+j} + carry$
 $carry \leftarrow \lfloor tmp/B \rfloor; c_{i+j} \leftarrow tmp \mod B$
 $\rightarrow c_{i+\ell} \leftarrow carry$

$$a_{i} \qquad 3 \quad 7 \qquad k = 2$$

$$b_{i} \qquad 8 \quad 5 \qquad \ell = 2$$

$$c_{i} \qquad 3 \quad 1 \quad 4 \quad 5$$

$$i \quad 1 \qquad j \qquad tmp \quad 31 \qquad carry \quad 3$$

æ

「日本・日本・日本・

Division with remainder

- Euclidean division
 - Given $a \ge 0$ and b > 0, compute q and r such that

$$a = b \cdot q + r, \quad 0 \le r < b$$

• Algorithm overview Input: $a = (a_{k-1} \dots a_0)_B$ and $b = (b_{\ell-1} \dots b_0)_B$ with $b_{\ell-1} \neq 0$. Output: $q = (q_{m-1} \dots q_0)_B$ with $m := k - \ell + 1$, and r $r \leftarrow a$ for i = m - 1 downto 0 do $q_i \leftarrow \lfloor r/(B^i b) \rfloor$ $r \leftarrow r - B^i \cdot q_i \cdot b$ output (q, r)

Division with reminder

Euclidean division:

Input: $a = (a_{k-1} \dots a_0)_B$ and $b = (b_{\ell-1} \dots b_0)_B$ with $b_{\ell-1} \neq 0$. Output: $q = (q_{m-1} \dots q_0)_B$ with $m := k - \ell + 1$, and r $r \leftarrow a$ for i = m - 1 downto 0 do $q_i \leftarrow \lfloor r/(B^i b) \rfloor$ $r \leftarrow r - B^i \cdot q_i \cdot b$ output (q, r)• Property

- One can show inductively that $0 \le r < B^i \cdot b$ after step *i*
- Therefore, $0 \le r < b$ eventually.

Division with reminder

• Euclidean division:

Input: $a = (a_{k-1} \dots a_0)_B$ and $b = (b_{\ell-1} \dots b_0)_B$ with $b_{\ell-1} \neq 0$. Output: $q = (q_{m-1} \dots q_0)_B$ with $m := k - \ell + 1$, and r $r \leftarrow a$ for i = m - 1 downto 0 do $q_i \leftarrow \lfloor r/(B^i b) \rfloor$ $r \leftarrow r - B^i \cdot q_i \cdot b$ output (q, r)

- How to compute $q_i = \lfloor r/(B^i \cdot b) \rfloor$
 - Test all possible values of $0 \le q_i < B$
 - Not efficient, except if B is small.
 - Possible to do much better, by predicting q_i from the most significant digits of r and b; see Shoup's book.
- Binary Euclidean division algorithm
 - We assume $B = 2^{\nu}$ and first convert
 - a, b to binary representation (B = 2)

Division with reminder

• Euclidean division:

Input: $a = (a_{k-1} \dots a_0)_B$ and $b = (b_{\ell-1} \dots b_0)_B$ with $b_{\ell-1} \neq 0$. Output: $q = (q_{m-1} \dots q_0)_B$ with $m := k - \ell + 1$, and r $r \leftarrow a$ for i = m - 1 downto 0 do $q_i \leftarrow \lfloor r/(B^i b) \rfloor$ $r \leftarrow r - B^i \cdot q_i \cdot b$ output (q, r)

- How to compute $q_i = \lfloor r/(B^i \cdot b) \rfloor$
 - Test all possible values of $0 \le q_i < B$
 - Not efficient, except if B is small.
 - Possible to do much better, by predicting q_i from the most significant digits of r and b; see Shoup's book.
- Binary Euclidean division algorithm
 - We assume $B=2^{\nu}$ and first convert
 - a, b to binary representation (B = 2)

Binary Euclidean division

• Input:
$$a = (a_{k-1} \dots a_0)_2$$
 and $b = (b_{\ell-1} \dots b_0)_2$ with
 $a \ge b > 0$ and $b_{\ell-1} = 1$.
Output: (q, r)
 $q \leftarrow 0, r \leftarrow a, c \leftarrow 2^{\max(0, k-\ell)} \cdot b$
for $i = 0$ to $\max(0, k - \ell)$ do
 $q \leftarrow 2 \cdot q$
if $r \ge c$ then
 $r \leftarrow r - c$
 $q \leftarrow q + 1$
 $c \leftarrow c/2$
Return (q, r)
• Complexity: $\mathcal{O}(\ell \cdot (k - \ell + 1))$

▲御▶ ▲ 陸▶ ▲ 陸▶

э

Binary Euclidean division

• Input:
$$a = (a_{k-1} \dots a_0)_2$$
 and $b = (b_{\ell-1} \dots b_0)_2$ with
 $a \ge b > 0$ and $b_{\ell-1} = 1$.
Output: (q, r)
 $q \leftarrow 0, r \leftarrow a, c \leftarrow 2^{\max(0, k-\ell)} \cdot b$
for $i = 0$ to $\max(0, k - \ell)$ do
 $q \leftarrow 2 \cdot q$
if $r \ge c$ then
 $r \leftarrow r - c$
 $q \leftarrow q + 1$
 $c \leftarrow c/2$
Return (q, r)
• Complexity: $\mathcal{O}(\ell \cdot (k - \ell + 1))$

個 とくきとくきと

æ

- For a ∈ Z, let len(a) be the number of bits in the binary representation of |a|:
 - $\operatorname{len}(a) = \lfloor \log_2 |a| \rfloor + 1$ if $a \neq 0$
 - len(0) = 1 $2^{len(a)-1} \le a < 2^{len(a)}$ for a > 0
- Let a and b be two arbitrary integers
 - We can compute $a \pm b$ in time $\mathcal{O}(\operatorname{len}(a) + \operatorname{len}(b))$
 - We can compute $a \cdot b$ in time $\mathcal{O}(\operatorname{len}(a)\operatorname{len}(b))$
 - We can compute the quotient q and the remainder r in a = b · q + r in time O(len(b) len(q))

/⊒ ▶ ◀ ⊒ ▶ ◀

- For a ∈ Z, let len(a) be the number of bits in the binary representation of |a|:
 - $len(a) = \lfloor log_2 |a| \rfloor + 1$ if $a \neq 0$ • len(0) = 1 $2^{len(a)-1} \leq a < 2^{len(a)}$ for a > 0
- Let a and b be two arbitrary integers
 - We can compute $a \pm b$ in time $\mathcal{O}(\operatorname{len}(a) + \operatorname{len}(b))$
 - We can compute $a \cdot b$ in time $\mathcal{O}(\operatorname{len}(a)\operatorname{len}(b))$
 - We can compute the quotient q and the remainder r in a = b · q + r in time O(len(b) len(q))

伺 ト イヨ ト イヨト

Modular exponentiation

- We want to compute $c = a^b \pmod{n}$.
 - Example: RSA
 - c = m^e (mod n) where m is the message, e the public exponent, and n the modulus.
- Naive method:
 - Multiplying a in total b times by itself modulo n
 - Very slow: if b is 100 bits, roughly 2^{100} multiplications !
- Example: compute $b = a^{16} \pmod{n}$
 - $b = a \cdot a \cdot \ldots \cdot a \cdot a \pmod{n}$: 15 multiplications
 - $b = (((a^2)^2)^2)^2 \pmod{n}$: 4 multiplications

Square and multiply algorithm

• Let $b = (b_{\ell-1} \dots b_0)_2$ the binary representation of b

$$b=\sum_{i=0}^{\ell-1}b_i\cdot 2^i$$

• Square and multiply algorithm :

• Input :
$$a, b$$
 and n
• Output : $a^b \pmod{n}$
• $c \leftarrow 1$
for $i = \ell - 1$ down to 0 do
 $c \leftarrow c^2 \pmod{n}$
if $b_i = 1$ then $c \leftarrow c \cdot a \pmod{n}$
Output c

• Complexity: $\mathcal{O}(\operatorname{len}(n)^3)$

Analysis

• Let B_i be the integer with binary representation $(b_{\ell-1} \dots b_i)_2$, and let

$$c_i = a^{B_i} \pmod{n}$$

Initialization

$$\left\{ egin{array}{ccc} B_\ell &=& 0 \ c_\ell &=& 1 \end{array}
ight.$$

• Recursive step

$$\begin{cases} B_i = 2 \cdot B_{i+1} + b_i \\ c_i = (c_{i+1})^2 \cdot a^{b_i} \pmod{n} \end{cases}$$

• Final step

$$\begin{cases} B_0 = b \\ c_0 = a^b \pmod{n} \end{cases}$$

< ∃ >

- Computing $a + b \mod n$
 - First compute a + b in \mathbb{Z} , then reduce modulo n
 - Complexity: $\mathcal{O}(\operatorname{len}(n))$
- Computing $a \cdot b \mod n$
 - First compute $a \cdot b$ in \mathbb{Z} , then reduce modulo n
 - Complexity: $\mathcal{O}(\operatorname{len}(n)^2)$
- Computing $a^b \mod n$
 - Complexity: $\mathcal{O}(\operatorname{len}(n)^3)$

Primality Testing

- Motivation for prime generation:
 - Generate the primes p and q in RSA.
 - p and q must be large: at least 512 bits.
- Goal of primality testing:
 - Given an integer *n*, determine whether *n* is prime or composite.
- Simplest algorithm: trial division.
 - Test if *n* is divisible by 2, 3, 4, 5,... We can stop at \sqrt{n} .
 - Algorithm determines if *n* is prime or composite, and outputs the factors of *n* if *n* is composite.
 - Very inefficient algorithm
 - Requires $\simeq \sqrt{n}$ arithmetic operations.
 - If n has 256 bits, then 2¹²⁸ arithmetic operations. If 2³⁰ operations/s, this takes 10²² years !

→ Ξ →

Primality Testing

- Motivation for prime generation:
 - Generate the primes p and q in RSA.
 - p and q must be large: at least 512 bits.
- Goal of primality testing:
 - Given an integer *n*, determine whether *n* is prime or composite.
- Simplest algorithm: trial division.
 - Test if n is divisible by 2, 3, 4, 5,... We can stop at \sqrt{n} .
 - Algorithm determines if *n* is prime or composite, and outputs the factors of *n* if *n* is composite.
 - Very inefficient algorithm
 - Requires $\simeq \sqrt{n}$ arithmetic operations.
 - If n has 256 bits, then 2¹²⁸ arithmetic operations. If 2³⁰ operations/s, this takes 10²² years !

- Goal: describe an efficient probabilistic primality test.
 - Can test primality for a 512-bit integer n in less than a second.
- Probabilistic primality testing.
 - The algorithm does not find the prime factors of *n* when *n* is composite.
 - The algorithm may make a mistake (pretend that an integer *n* is prime whereas it is composite).
 - But the mistake can be made arbitrarily small (*e.g.* < 2⁻¹⁰⁰), so this makes no difference in practice.

Distribution of prime numbers

- Let $\pi(x)$ be the number of primes in the interval [2, x].
- Theorem (Prime number theorem)
 - $\pi(x) \sim x/\log x$.
- Consequence:
 - A random integer between 2 and x is prime with probability $\simeq 1/\log x$
 - A random *n*-bit integer is prime with probability

$$\frac{1}{\log 2} \cdot \frac{1}{n}$$

• Prime numbers are relatively frequent

The Fermat test

• Fermat's little theorem

- If *n* is prime and *a* is an integer between 1 and n-1, then $a^{n-1} \equiv 1 \pmod{n}$.
- Therefore, if the primality of n is unknown, finding $a \in [1, n-1]$ such that $a^{n-1} \neq 1 \pmod{n}$ proves that n is composite.
- Fermat primality test with security parameter t.

For i = 1 to t do Choose a random $a \in [2, n - 2]$ Compute $r = a^{n-1} \mod n$ If $r \neq 1$ then return "composite" Return "prime"

• Complexity: $\mathcal{O}(t \cdot \log^3 n)$

The Fermat test

- Fermat's little theorem
 - If *n* is prime and *a* is an integer between 1 and n-1, then $a^{n-1} \equiv 1 \pmod{n}$.
 - Therefore, if the primality of n is unknown, finding $a \in [1, n-1]$ such that $a^{n-1} \neq 1 \pmod{n}$ proves that n is composite.
- Fermat primality test with security parameter t.

For i = 1 to t do Choose a random $a \in [2, n - 2]$ Compute $r = a^{n-1} \mod n$ If $r \neq 1$ then return "composite" Return "prime"

• Complexity: $\mathcal{O}(t \cdot \log^3 n)$

Analysis of Fermat's test

- Let $L_n = \{a \in [1, n-1] : a^{n-1} \equiv 1 \pmod{n}\}$
- Theorem:
 - If *n* is prime, then $L_n = \mathbb{Z}_n^*$. If *n* is composite and $L_n \subsetneq \mathbb{Z}_n^*$, then $|L_n| \le (n-1)/2$.
- Proof:
 - If *n* is prime, $L_n = \mathbb{Z}_n^*$ from Fermat.
 - If n is composite, since L_n is a sub-group of Z^{*}_n and the order of a subgroup divides the order of the group, |Z^{*}_n| = m · |L_n| for some integer m, with m > 1 since by assumption L_n ⊊ Z^{*}_n

$$|L_n| = \frac{1}{m} |\mathbb{Z}_n^*| \le \frac{1}{2} |\mathbb{Z}_n^*| \le \frac{n-1}{2}$$

A B F A B F

Analysis of Fermat's test

- If *n* is composite and $L_n \subsetneq \mathbb{Z}_n^*$
 - then $a^{n-1} = 1 \pmod{n}$ with probability at most 1/2 for a random $a \in [2, n-2]$.
 - The algorithm outputs "prime" wih probability at most 2^{-t} .
- Unfortunately, there are odd composite numbers *n* such that $L_n = \mathbb{Z}_n^*$.
 - Such numbers are called Carmichael numbers. The smallest Carmichael number is 561.
 - Carmichael numbers are rare, but there are an infinite number of them, so we cannot ignore them.

< ∃ > <

- If *n* is composite and $L_n \subsetneq \mathbb{Z}_n^*$
 - then $a^{n-1} = 1 \pmod{n}$ with probability at most 1/2 for a random $a \in [2, n-2]$.
 - The algorithm outputs "prime" will probability at most 2^{-t} .
- Unfortunately, there are odd composite numbers *n* such that $L_n = \mathbb{Z}_n^*$.
 - Such numbers are called Carmichael numbers. The smallest Carmichael number is 561.
 - Carmichael numbers are rare, but there are an infinite number of them, so we cannot ignore them.

The Miller-Rabin test is a variant of Fermat test with a different L_n. Write n - 1 = m2^h for odd m.

$$\begin{array}{l} L_n' = \{ a \in \mathbb{Z}_n^* : \, a^{m2^h} = 1 \text{ and} \\ \text{ for } j = 0, \dots, h-1, \, \, a^{m2^{j+1}} = 1 \text{ implies } a^{m2^j} = \pm 1 \} \end{array}$$

• Illustration for $a \in L'_n$

j	0	1	2		h-2	h-1	h
a ^{m2ⁱ}	1	1	1	•••	1	1	1
	-1	1	1	• • •	1	1	1
	X	-1	1	• • •	1	1	1
	X	Х	Х	•••	Х	-1	1

• Equivalently

$$L'_n = \{a \in \mathbb{Z}_n^*: a^m = 1 ext{ or } a^{m2^j} = -1 ext{ for some } 0 \leq j \leq h-1 \}$$

• • = • • = •

The Miller-Rabin test is a variant of Fermat test with a different L_n. Write n - 1 = m2^h for odd m.

$$\begin{array}{l} L_n' = \{ a \in \mathbb{Z}_n^* : \, a^{m2^h} = 1 \, \text{and} \\ \quad \text{for } j = 0, \dots, h-1, \, \, a^{m2^{j+1}} = 1 \, \text{implies} \, \, a^{m2^j} = \pm 1 \} \end{array}$$

• Illustration for $a \in L'_n$

j	0	1	2		h-2	h-1	h
a ^{m2ⁱ}	1	1	1	•••	1	1	1
	-1	1	1	•••	1	1	1
	X	-1	1	• • •	1	1	1
	Х	Х	Х		Х	-1	1

Equivalently

$$L_n'=\{a\in\mathbb{Z}_n^*:a^m=1 ext{ or }\ a^{m2^j}=-1 ext{ for some }\ 0\leq j\leq h-1\}$$

Miller-Rabin test

$$\begin{array}{l} L_n' = \{ a \in \mathbb{Z}_n^* : a^{m2^h} = 1 \text{ and} \\ \text{ for } j = 0, \dots, h-1, \ a^{m2^{j+1}} = 1 \text{ implies } a^{m2^j} = \pm 1 \} \end{array}$$

where $n - 1 = m2^h$ for odd m.

- Theorem
 - If *n* is prime, then $L'_n = \mathbb{Z}_n^*$
 - If n is composite, then $|L_n'| \leq (n-1)/4$

• Proof for *n* prime

• Let $a \in \mathbb{Z}_n^*$. By Fermat, $a^{m \cdot 2^h} = a^{n-1} = 1 \pmod{n}$

- If $a^{m2^{j+1}} = 1$ for some $0 \le j \le h-1$, let $\beta = a^{m2^j}$. Since $\beta^2 = a^{m2^{j+1}} = 1$, then $\beta = \pm 1$.
 - because a polynomial of degree *d* has at most *d* roots modulo a prime.
- Therefore $a \in L'_n$.

$$\begin{array}{l} L_n' = \{ a \in \mathbb{Z}_n^* : \, a^{m2^h} = 1 \text{ and} \\ \quad \text{ for } j = 0, \dots, h-1, \, \, a^{m2^{j+1}} = 1 \text{ implies } a^{m2^j} = \pm 1 \} \end{array}$$

where $n - 1 = m2^h$ for odd m.

Theorem

- If *n* is prime, then $L'_n = \mathbb{Z}_n^*$
- If n is composite, then $|L_n'| \leq (n-1)/4$
- Proof for *n* prime
 - Let $a \in \mathbb{Z}_n^*$. By Fermat, $a^{m \cdot 2^h} = a^{n-1} = 1 \pmod{n}$
 - If $a^{m2^{j+1}} = 1$ for some $0 \le j \le h-1$, let $\beta = a^{m2^j}$. Since $\beta^2 = a^{m2^{j+1}} = 1$, then $\beta = \pm 1$.
 - because a polynomial of degree *d* has at most *d* roots modulo a prime.
 - Therefore $a \in L'_n$.

Algorithm 1 Testing whether $\alpha \in L'_n$

1: Write
$$n - 1 = 2^h \cdot m$$
 for odd m .

2:
$$\beta \leftarrow \alpha^m$$

- 3: if $\beta = 1$ then **return** true
- 4: for j = 1 to h 1 do
- 5: **if** $\beta = -1$ then **return** true
- 6: **if** $\beta = +1$ then **return** false
- 7: $\beta \leftarrow \beta^2$
- 8: end for
- 9: return false

Algorithm 2 Miller-Rabin test of primality

Input: An odd integer *n*, and $t \in \mathbb{Z}$.

- 1: repeat t times
- 2: Generate a random $\alpha \in \mathbb{Z}_n$
- 3: **if** $\alpha \notin L'_n$ **return** false
- 4: return true

• = • •

Algorithm 3 Testing whether $\alpha \in L'_n$

1: Write
$$n - 1 = 2^h \cdot m$$
 for odd m .

2:
$$\beta \leftarrow \alpha^m$$

- 3: if $\beta = 1$ then return true
- 4: for j = 1 to h 1 do
- 5: **if** $\beta = -1$ then **return** true
- 6: **if** $\beta = +1$ then **return** false
- 7: $\beta \leftarrow \beta^2$
- 8: end for
- 9: return false

Algorithm 4 Miller-Rabin test of primality

Input: An odd integer *n*, and $t \in \mathbb{Z}$.

- 1: repeat t times
- 2: Generate a random $\alpha \in \mathbb{Z}_n$
- 3: **if** $\alpha \notin L'_n$ **return** false
- 4: return true

- Property
 - If *n* is prime, then the Miller-Rabin test always declares *n* as prime.
 - If n ≥ 3 is composite, then the probability that the Miller-Rabin test outputs "prime" is less than (¹/₄)^t
- Most widely used test in practice.
 - With t = 40, error probability less than 2^{-80} . Much less than the probability of a hardware failure.
 - Can test the primality of a 512-bit integer in less than a second.
 - Complexity: $\mathcal{O}(t \cdot \log^3 n)$

Random prime number generation

- $\bullet\,$ To generate a random prime integer of size $\ell\,$ bits
 - Generate a random integer n of size ℓ bits
 - Test its primality with Miller-Rabin.
 - If *n* is declared prime, output *n*, otherwise generate another *n* again.
- Complexity
 - A $\ell\text{-bit}$ integer is prime with probability $\Omega(1/\ell)$
 - therefore $\mathcal{O}(\ell)$ trials are necessary.
 - Each primality test takes $\mathcal{O}(t \cdot \ell^3)$ time, so complexity $\mathcal{O}(t \cdot \ell^4)$
 - If a number is composite, only a constant number of Miller-Rabin tests will be required to discard it on average.
 - complexity $\mathcal{O}(\ell^4 + t \cdot \ell^3)$.

Random prime number generation

- To generate a random prime integer of size ℓ bits
 - Generate a random integer n of size ℓ bits
 - Test its primality with Miller-Rabin.
 - If *n* is declared prime, output *n*, otherwise generate another *n* again.
- Complexity
 - A ℓ -bit integer is prime with probability $\Omega(1/\ell)$
 - therefore $\mathcal{O}(\ell)$ trials are necessary.
 - Each primality test takes $\mathcal{O}(t \cdot \ell^3)$ time, so complexity $\mathcal{O}(t \cdot \ell^4)$
 - If a number is composite, only a constant number of Miller-Rabin tests will be required to discard it on average.
 - complexity $\mathcal{O}(\ell^4 + t \cdot \ell^3)$.