# Computing with large integers 

Jean-Sébastien Coron

University of Luxembourg

- Basic algorithms for computing with large integers
- Addition, subtraction, multiplication, division with reminder
- Modular exponentiation
- Probabilistic primality testing
- How to generate large primes efficiently for RSA


## Computing with large integers

- Limited precision by word size of CPU
- 32 bits or 64 bits. Computing with values $<2^{32}$ or $<2^{64}$
- Computing with large integers:
- One represents the big integers in base $B$ in an array, with a bit sign.

$$
a= \pm \begin{array}{|l|l|ll}
\square & \cdots & \square & \square \\
\hline
\end{array}
$$

- One implements addition, multiplication, division on such arrays.
- Existing libraries:
- GMP: www.swox.com/gmp
- NTL: www.shoup.net
- Some parts written in assembly for better efficiency.


## Representation of large integers

- Representing large integers :
- An integer is represented as an array of digits in base $B$, with a sign bit.

$$
a= \pm \sum_{i=0}^{k-1} a_{i} B^{i}= \pm\left(a_{k-1} \ldots a_{0}\right)_{B}
$$

with $0 \leq a_{i}<B$.

- If $a \neq 0$, we must have $a_{k-1} \neq 0$.
- Choice of $B$
- One generally takes $B=2^{v}$ for some $v$.


## Algorithms for large integers

- Here we describe algorithms for positive integers
- Can be easily adapted to signed integers
- Low-level arithmetic operations
- We assume that our programming language can do low-level addition, subtraction, multiplication and integer division
- with integers of absolute value $<B^{2}$.

$$
a= \pm \sum_{i=0}^{k-1} a_{i} B^{i}= \pm\left(a_{k-1} \ldots a_{0}\right)_{B}
$$

- Example: C programming language
- With type unsigned long int
on a 64-bit computer, take $B=2^{32}$
- More efficient implementations are
possible


## Algorithms for large integers

- Here we describe algorithms for positive integers
- Can be easily adapted to signed integers
- Low-level arithmetic operations
- We assume that our programming language can do low-level addition, subtraction, multiplication and integer division
- with integers of absolute value $<B^{2}$.

$$
a= \pm \sum_{i=0}^{k-1} a_{i} B^{i}= \pm\left(a_{k-1} \ldots a_{0}\right)_{B}
$$

- Example: C programming language
- With type unsigned long int on a 64-bit computer, take $B=2^{32}$
- More efficient implementations are possible


## Addition

- Computing $c=a+b$ with $a, b>0$
- Let $a=\left(a_{k-1} \ldots a_{0}\right)$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)$ with $k \geq \ell \geq 1$.

Let $c=\left(c_{k} c_{k-1} \ldots c_{0}\right)$
carry $\leftarrow 0$
for $i=0$ to $\ell-1$ do
tmp $\leftarrow a_{i}+b_{i}+$ carry
carry $\leftarrow\lfloor$ tmp $/ B\rfloor ; c_{i} \leftarrow t m p \bmod B$
for $i=\ell$ to $k-1$ do tmp $\leftarrow a_{i}+$ carry carry $\leftarrow\lfloor$ tmp $/ B\rfloor ; c_{i} \leftarrow t m p \bmod B$
$c_{k} \leftarrow$ carry

- In every loop iteration
- $0 \leq \operatorname{tmp} \leq 2 B-1$, carry $\in\{0,1\}$
- Complexity: $\mathcal{O}(k)$


## Addition

- Computing $c=a+b$ with $a, b>0$
- Let $a=\left(a_{k-1} \ldots a_{0}\right)$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)$ with $k \geq \ell \geq 1$.

Let $c=\left(c_{k} c_{k-1} \ldots c_{0}\right)$
carry $\leftarrow 0$
for $i=0$ to $\ell-1$ do
$t m p \leftarrow a_{i}+b_{i}+$ carry
carry $\leftarrow\lfloor$ tmp $/ B\rfloor ; c_{i} \leftarrow t m p \bmod B$
for $i=\ell$ to $k-1$ do
tmp $\leftarrow a_{i}+$ carry
carry $\leftarrow\lfloor$ tmp $/ B\rfloor ; c_{i} \leftarrow t m p \bmod B$
$c_{k} \leftarrow$ carry

- In every loop iteration
- $0 \leq t m p \leq 2 B-1$, carry $\in\{0,1\}$.
- Complexity: $\mathcal{O}(k)$


## Addition: example in base $B=10$

```
\(\rightarrow\) carry \(\leftarrow 0\)
    for \(i=0\) to \(\ell-1\) do
        \(t m p \leftarrow a_{i}+b_{i}+\) carry
        carry \(\leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B\)
    for \(i=\ell\) to \(k-1\) do
        \(t m p \leftarrow a_{i}+\) carry
        carry \(\leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B\)
    \(c_{k} \leftarrow\) carry
```

| $a_{i}$ | 6 | 4 | 7 |  | $\begin{aligned} & k=3 \\ & \ell=2 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $b_{i}$ |  | 8 | 5 |  |  |
| $c_{i}$ |  |  |  |  |  |
| 1 | tmp |  |  | carry | y 0 |

## Addition: example in base $B=10$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } \ell-1 \text { do } \\
& \rightarrow \quad t m p \leftarrow a_{i}+b_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& \text { for } i=\ell \text { to } k-1 \text { do } \\
& \text { tmp } \leftarrow a_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& c_{k} \leftarrow \text { carry }
\end{aligned}
$$

## Addition: example in base $B=10$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } \ell-1 \text { do } \\
& \text { tmp } \leftarrow a_{i}+b_{i}+\text { carry } \\
& \rightarrow \quad \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& \text { for } i=\ell \text { to } k-1 \text { do } \\
& t m p \leftarrow a_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& c_{k} \leftarrow \text { carry }
\end{aligned}
$$

## Addition: example in base $B=10$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } \ell-1 \text { do } \\
& \rightarrow \quad t m p \leftarrow a_{i}+b_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& \text { for } i=\ell \text { to } k-1 \text { do } \\
& t m p \leftarrow a_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& c_{k} \leftarrow \text { carry }
\end{aligned}
$$

## Addition: example in base $B=10$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } \ell-1 \text { do } \\
& \text { tmp } \leftarrow a_{i}+b_{i}+\text { carry } \\
& \rightarrow \quad \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& \text { for } i=\ell \text { to } k-1 \text { do } \\
& t m p \leftarrow a_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& c_{k} \leftarrow \text { carry }
\end{aligned}
$$

## Addition: example in base $B=10$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } \ell-1 \text { do } \\
& \text { tmp } \leftarrow a_{i}+b_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& \text { for } i=\ell \text { to } k-1 \text { do } \\
& \rightarrow \quad t m p \leftarrow a_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& c_{k} \leftarrow \text { carry }
\end{aligned}
$$

## Addition: example in base $B=10$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } \ell-1 \text { do } \\
& \text { tmp } \leftarrow a_{i}+b_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& \text { for } i=\ell \text { to } k-1 \text { do } \\
& t m p \leftarrow a_{i}+\text { carry } \\
& \rightarrow \quad \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& c_{k} \leftarrow \text { carry }
\end{aligned}
$$

## Addition: example in base $B=10$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } \ell-1 \text { do } \\
& \text { tmp } \leftarrow a_{i}+b_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& \text { for } i=\ell \text { to } k-1 \text { do } \\
& t m p \leftarrow a_{i}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B \\
& \rightarrow c_{k} \leftarrow \text { carry }
\end{aligned}
$$

## Subtraction

- Same algorithm as addition, with $a_{i}+b_{i}$ replaced by $a_{i}-b_{i}$
- Computing $c=a-b$ with $a, b>0$
- Let $a=\left(a_{k-1} \ldots a_{0}\right)$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)$ with $k \geq \ell \geq 1$. Let $c=\left(c_{k} c_{k-1} \ldots c_{0}\right)$
carry $\leftarrow 0$
for $i=0$ to $\ell-1$ do
$t m p \leftarrow a_{i}-b_{i}+c a r r y$
carry $\leftarrow\lfloor\operatorname{tmp} / B\rfloor ; c_{i} \leftarrow t m p \bmod B$
for $i=\ell$ to $k-1$ do
$t m p \leftarrow a_{i}+$ carry
carry $\leftarrow\lfloor\operatorname{tmp} / B\rfloor ; c_{i} \leftarrow \operatorname{tmp} \bmod B$ $c_{k} \leftarrow$ carry
- In every loon iteration
- $-B \leq \operatorname{tmp} \leq B-1$, carry $\in\{-1,0\}$
- If $a \geq b$ then $c_{k}=0$, otherwise $c_{k}=-1$.
- If $c_{k}=-1$, compute $c^{\prime}=b-a$ and
- Same algorithm as addition, with $a_{i}+b_{i}$ replaced by $a_{i}-b_{i}$
- Computing $c=a-b$ with $a, b>0$
- Let $a=\left(a_{k-1} \ldots a_{0}\right)$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)$ with $k \geq \ell \geq 1$.

Let $c=\left(c_{k} c_{k-1} \ldots c_{0}\right)$
carry $\leftarrow 0$
for $i=0$ to $\ell-1$ do

$$
t m p \leftarrow a_{i}-b_{i}+\text { carry }
$$

$$
\text { carry } \leftarrow\lfloor\text { tmp } / B\rfloor ; c_{i} \leftarrow t m p \bmod B
$$

for $i=\ell$ to $k-1$ do tmp $\leftarrow a_{i}+$ carry carry $\leftarrow\lfloor$ tmp $/ B\rfloor ; c_{i} \leftarrow t m p \bmod B$
$c_{k} \leftarrow$ carry

- In every loop iteration
- If $a \geq b$ then $c_{k}=0$, otherwise $c_{k}=-1$.
- If $c_{k}=-1$, compute $c^{\prime}=b-a$ and
- Same algorithm as addition, with $a_{i}+b_{i}$ replaced by $a_{i}-b_{i}$
- Computing $c=a-b$ with $a, b>0$

```
- Let \(a=\left(a_{k-1} \ldots a_{0}\right)\) and \(b=\left(b_{\ell-1} \ldots b_{0}\right)\) with \(k \geq \ell \geq 1\).
    Let \(c=\left(c_{k} c_{k-1} \ldots c_{0}\right)\)
    carry \(\leftarrow 0\)
    for \(i=0\) to \(\ell-1\) do
        \(t m p \leftarrow a_{i}-b_{i}+\) carry
        carry \(\leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B\)
    for \(i=\ell\) to \(k-1\) do
        \(t m p \leftarrow a_{i}+\) carry
        carry \(\leftarrow\lfloor t m p / B\rfloor ; c_{i} \leftarrow t m p \bmod B\)
    \(c_{k} \leftarrow\) carry
```

- In every loop iteration
- $-B \leq t m p \leq B-1$, carry $\in\{-1,0\}$.
- If $a \geq b$ then $c_{k}=0$, otherwise $c_{k}=-1$.
- If $c_{k}=-1$, compute $c^{\prime}=b-a$ and let $c:=-c^{\prime}$.


## Multiplication

- Schoolbook method

|  |  |  | 5 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\times$ |  | 8 | 3 | 5 |  |
|  |  | 2 | 6 | 6 | 0 |
|  | 1 | 5 | 9 | 6 |  |
| 4 | 2 | 5 | 6 |  |  |
| 4 | 4 | 4 | 2 | 2 | 0 |

- Drawback: storage of intermediate results
- Space complexity $\mathcal{O}\left(n^{2}\right)$ for $n$ digits
- We can do much better by accumulating the intermediate results


## Multiplication

- Computing $c=a \cdot b$ with $a, b>0$
- Let $a=\left(a_{k-1} \ldots a_{0}\right)$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)$ with $k, \ell \geq 1$. Let $c=\left(c_{k+\ell-1} \ldots c_{0}\right)$
carry $\leftarrow 0$
for $i=0$ to $k+\ell-1$ do

$$
c_{i} \leftarrow 0
$$

$$
\text { for } i=0 \text { to } k-1 \text { do }
$$

$$
\text { carry } \leftarrow 0
$$

$$
\text { for } j=0 \text { to } \ell-1 \text { do }
$$

$$
t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry }
$$

$$
\text { carry } \leftarrow\lfloor\text { tmp } / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B
$$

$$
c_{i+\ell} \leftarrow \text { carry }
$$

- In every loop iteration
- $0 \leq t m p \leq B^{2}-1,0 \leq$ carry $\leq B-1$.
- Complexity: $\mathcal{O}(k \cdot \ell)$


## Multiplication

- Computing $c=a \cdot b$ with $a, b>0$
- Let $a=\left(a_{k-1} \ldots a_{0}\right)$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)$ with $k, \ell \geq 1$. Let $c=\left(c_{k+\ell-1} \ldots c_{0}\right)$
carry $\leftarrow 0$
for $i=0$ to $k+\ell-1$ do

$$
c_{i} \leftarrow 0
$$

$$
\text { for } i=0 \text { to } k-1 \text { do }
$$

$$
\text { carry } \leftarrow 0
$$

$$
\text { for } j=0 \text { to } \ell-1 \text { do }
$$

$$
\operatorname{tmp} \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry }
$$

$$
\text { carry } \leftarrow\lfloor\text { tmp } / B\rfloor ; c_{i+j} \leftarrow \operatorname{tmp} \bmod B
$$

$$
c_{i+\ell} \leftarrow \text { carry }
$$

- In every loop iteration
- $0 \leq t m p \leq B^{2}-1,0 \leq c a r r y \leq B-1$.
- Complexity: $\mathcal{O}(k \cdot \ell)$


## Multiplication: example in base $B=10$

$$
\begin{aligned}
& \rightarrow \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry } \\
& a_{i} \quad \begin{array}{|l|l|}
\hline 3 & 7 \\
\hline
\end{array} \quad k=2 \\
& b_{i} \quad \begin{array}{|l|l|}
\hline 8 & 5 \\
\hline
\end{array} \quad \ell=2 \\
& c_{i} \begin{array}{ll|l|l|l|}
\hline & & & \\
\cline { 2 - 4 } & & & & \\
\hline
\end{array} \\
& i \square \quad j \quad \text { tmp } \square \text { carry } 0
\end{aligned}
$$

## Multiplication: example in base $B=10$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \rightarrow \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& \text { tmp } \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry } \\
& a_{i} \quad \begin{array}{|l|l|}
\hline 3 & 7 \\
\hline
\end{array} \quad k=2 \\
& b_{i} \quad \begin{array}{|l|l|}
\hline 8 & 5 \\
\hline
\end{array} \quad \ell=2 \\
& c_{i} \quad \begin{array}{|l|l|l|l|}
\hline 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \text { tmp }
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \rightarrow \quad \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry } \\
& a_{i} \quad \quad k=2 \\
& b_{i} \quad \begin{array}{|l|l|}
\hline 8 & 5 \\
\hline
\end{array} \quad \ell=2 \\
& c_{i} \quad \begin{array}{|l|l|l|l|}
\hline 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& i \square \text { tmp } \square \quad \text { carry } 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& \rightarrow \quad t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor\text { tmp } / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry }
\end{aligned}
$$

$$
\begin{aligned}
& i \boxed{0} \quad j \quad 0 \quad \text { tmp } 35 \text { carry } 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \rightarrow \quad \text { carry } \leftarrow\lfloor\text { tmp } / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry } \\
& \begin{array}{lll} 
& \begin{array}{l|l} 
& \downarrow \\
a_{i} & \begin{array}{|l|l|}
\hline 3 & 7 \\
\hline
\end{array} \\
b_{i} & \begin{array}{l|l} 
& \downarrow \\
8 & 5 \\
\hline
\end{array}
\end{array} \quad \ell=2
\end{array} \\
& c_{i} \quad \begin{array}{ll|l|l|l|}
\hline 0 & 0 & 0 & 5 \\
\hline
\end{array} \\
& i \quad 0 \quad j \quad 0 \quad \text { tmp } 35 \text { carry } 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& \rightarrow \quad t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry }
\end{aligned}
$$

$$
\begin{aligned}
& i \quad 0 \quad j \quad \text { tmp } 59 \text { carry } 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \rightarrow \quad \text { carry } \leftarrow\lfloor\text { tmp } / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry }
\end{aligned}
$$

$$
\begin{aligned}
& c_{i} \quad \begin{array}{|l|l|l|l|}
\hline 0 & 0 & 9 & 5 \\
\hline
\end{array} \\
& i \quad 0 \quad j \quad 1 \quad \text { tmp } 59 \text { carry } 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& \rightarrow \quad c_{i+\ell} \leftarrow \text { carry } \\
& a_{i} \quad \quad k=2 \\
& b_{i} \quad \begin{array}{|l|l|}
\hline 8 & 5 \\
\hline
\end{array} \quad \ell=2 \\
& c_{i} \quad \begin{array}{|l|l|l|l|}
\hline 0 & 5 & 9 & 5 \\
\hline
\end{array} \\
& i \quad 0 \quad \text { tmp } \square 59 \text { carry } 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \rightarrow \quad \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry } \\
& a_{i} \quad \begin{array}{|l|l|}
\hline 3 & 7
\end{array} \quad k=2 \\
& b_{i} \quad \begin{array}{|l|l|}
\hline 8 & 5 \\
\hline
\end{array} \quad \ell=2 \\
& c_{i} \quad \begin{array}{|l|l|l|l|}
\hline 0 & 5 & 9 & 5 \\
\hline
\end{array} \\
& i \square \text { j } \quad \square \text { tmp } 59 \text { carry } 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& \rightarrow \quad t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry } \\
& \begin{array}{lll} 
& \begin{array}{l}
\downarrow \\
a_{i}
\end{array} & \begin{array}{|l|l|}
\hline 3 & 7 \\
\hline & \downarrow
\end{array} \\
b_{i} & k=2 \\
\hline 8 & 5 & \ell=2
\end{array} \\
& c_{i} \quad \begin{array}{ll|l|l|l|}
\hline 0 & 5 & 9 & 5 \\
\hline
\end{array} \\
& i \quad 1 \quad j \quad 0 \quad \text { tmp } 24 \text { carry } 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \rightarrow \quad \text { carry } \leftarrow\lfloor\text { tmp } / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry } \\
& \begin{array}{lll} 
& \begin{array}{l}
\downarrow \\
a_{i}
\end{array} & \begin{array}{|l|l|}
\hline 3 & 7 \\
\hline
\end{array} \\
b_{i} & \downarrow & k=2 \\
\hline 8 & 5 \\
\hline
\end{array} \quad \ell=2 \\
& c_{i} \quad \begin{array}{ll|l|l|l|}
\hline 0 & 5 & 4 & 5 \\
\hline
\end{array} \\
& i \quad 1 \quad j \quad 0 \quad \operatorname{tmp} \quad 24 \quad \text { carry } 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& \rightarrow \quad t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry }
\end{aligned}
$$

$$
\begin{aligned}
& i \boxed{1} \quad j \quad 1 \text { tmp } 31 \text { carry } 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \rightarrow \quad \text { carry } \leftarrow\lfloor\text { tmp } / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& c_{i+\ell} \leftarrow \text { carry }
\end{aligned}
$$

$$
\begin{aligned}
& c_{i} \quad \begin{array}{|l|l|l|l|}
\hline 0 & 1 & 4 & 5 \\
\hline
\end{array} \\
& i \quad 1 \quad j \quad \text { tmp } 31 \text { carry } 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } k+\ell-1 \text { do } c_{i} \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do } \\
& \text { carry } \leftarrow 0 \\
& \text { for } j=0 \text { to } \ell-1 \text { do } \\
& t m p \leftarrow a_{i} \cdot b_{j}+c_{i+j}+\text { carry } \\
& \text { carry } \leftarrow\lfloor t m p / B\rfloor ; c_{i+j} \leftarrow t m p \bmod B \\
& \rightarrow \quad c_{i+\ell} \leftarrow \text { carry } \\
& a_{i} \quad \begin{array}{|l|l|}
\hline 3 & 7 \\
\hline
\end{array} \quad k=2 \\
& b_{i} \quad \begin{array}{|l|l|}
\hline 8 & 5 \\
\hline
\end{array} \quad \ell=2 \\
& c_{i} \quad \begin{array}{|l|l|l|l|}
\hline 3 & 1 & 4 & 5 \\
\hline
\end{array} \\
& i \square \text { tmp } \quad 31 \text { carry } 3
\end{aligned}
$$

## Division with remainder

- Euclidean division
- Given $a \geq 0$ and $b>0$, compute $q$ and $r$ such that

$$
a=b \cdot q+r, \quad 0 \leq r<b
$$

- Algorithm overview

Input: $a=\left(a_{k-1} \ldots a_{0}\right)_{B}$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)_{B}$ with $b_{\ell-1} \neq 0$.
Output: $q=\left(q_{m-1} \ldots q_{0}\right)_{B}$ with $m:=k-\ell+1$, and $r$
$r \leftarrow a$
for $i=m-1$ downto 0 do
$q_{i} \leftarrow\left\lfloor r /\left(B^{i} b\right)\right\rfloor$

$$
r \leftarrow r-B^{i} \cdot q_{i} \cdot b
$$

output ( $q, r$ )

## Division with reminder

- Euclidean division:

Input: $a=\left(a_{k-1} \ldots a_{0}\right)_{B}$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)_{B}$ with $b_{\ell-1} \neq 0$.
Output: $q=\left(q_{m-1} \ldots q_{0}\right)_{B}$ with $m:=k-\ell+1$, and $r$
$r \leftarrow a$
for $i=m-1$ downto 0 do
$q_{i} \leftarrow\left\lfloor r /\left(B^{i} b\right)\right\rfloor$
$r \leftarrow r-B^{i} \cdot q_{i} \cdot b$
output ( $q, r$ )

- Property
- One can show inductively that $0 \leq r<B^{i} \cdot b$ after step $i$
- Therefore, $0 \leq r<b$ eventually.


## Division with reminder

- Euclidean division:

Input: $a=\left(a_{k-1} \ldots a_{0}\right)_{B}$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)_{B}$ with $b_{\ell-1} \neq 0$.
Output: $q=\left(q_{m-1} \ldots q_{0}\right)_{B}$ with $m:=k-\ell+1$, and $r$
$r \leftarrow a$
for $i=m-1$ downto 0 do
$q_{i} \leftarrow\left\lfloor r /\left(B^{i} b\right)\right\rfloor$
$r \leftarrow r-B^{i} \cdot q_{i} \cdot b$
output ( $q, r$ )

- How to compute $q_{i}=\left\lfloor r /\left(B^{i} \cdot b\right)\right\rfloor$
- Test all possible values of $0 \leq q_{i}<B$
- Not efficient, except if $B$ is small.
- Possible to do much better, by predicting $q_{i}$ from the most significant digits of $r$ and $b$;
see Shoup's book.
- Binary Euclidean division algorithm
- We assume $B=2^{v}$ and first convert
$a, b$ to binary representation $(B=2)$


## Division with reminder

- Euclidean division:

Input: $a=\left(a_{k-1} \ldots a_{0}\right)_{B}$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)_{B}$ with $b_{\ell-1} \neq 0$.
Output: $q=\left(q_{m-1} \ldots q_{0}\right)_{B}$ with $m:=k-\ell+1$, and $r$
$r \leftarrow a$
for $i=m-1$ downto 0 do
$q_{i} \leftarrow\left\lfloor r /\left(B^{i} b\right)\right\rfloor$
$r \leftarrow r-B^{i} \cdot q_{i} \cdot b$
output ( $q, r$ )

- How to compute $q_{i}=\left\lfloor r /\left(B^{i} \cdot b\right)\right\rfloor$
- Test all possible values of $0 \leq q_{i}<B$
- Not efficient, except if $B$ is small.
- Possible to do much better, by predicting $q_{i}$ from the most significant digits of $r$ and $b$; see Shoup's book.
- Binary Euclidean division algorithm
- We assume $B=2^{v}$ and first convert $a, b$ to binary representation $(B=2)$


## Binary Euclidean division

- Input: $a=\left(a_{k-1} \ldots a_{0}\right)_{2}$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)_{2}$ with $a \geq b>0$ and $b_{\ell-1}=1$.
Output: $(q, r)$
$q \leftarrow 0, r \leftarrow a, c \leftarrow 2^{\max (0, k-\ell)} \cdot b$
for $i=0$ to $\max (0, k-\ell)$ do
$q \leftarrow 2 \cdot q$
if $r \geq c$ then
$r \leftarrow r-c$
$q \leftarrow q+1$
$c \leftarrow c / 2$
Return ( $q, r$ )


## Binary Euclidean division

- Input: $a=\left(a_{k-1} \ldots a_{0}\right)_{2}$ and $b=\left(b_{\ell-1} \ldots b_{0}\right)_{2}$ with $a \geq b>0$ and $b_{\ell-1}=1$.
Output: $(q, r)$

$$
q \leftarrow 0, r \leftarrow a, c \leftarrow 2^{\max (0, k-\ell)} \cdot b
$$

$$
\text { for } i=0 \text { to } \max (0, k-\ell) \text { do }
$$

$$
q \leftarrow 2 \cdot q
$$

$$
\text { if } r \geq c \text { then }
$$

$$
r \leftarrow r-c
$$

$$
q \leftarrow q+1
$$

$$
c \leftarrow c / 2
$$

Return ( $q, r$ )

- Complexity: $\mathcal{O}(\ell \cdot(k-\ell+1))$


## Summary

- For $a \in \mathbb{Z}$, let len(a) be the number of bits in the binary representation of $|a|$ :
- len $(a)=\left\lfloor\log _{2}|a|\right\rfloor+1$ if $a \neq 0$
- $\operatorname{len}(0)=1$

$$
2^{\ln (a)-1} \leq a<2^{\operatorname{len}(a)} \text { for } a>0
$$

- Let $a$ and $b$ be two arbitrary integers
- We can compute $a \pm b$ in time $\mathcal{O}(\operatorname{len}(a)+\operatorname{len}(b))$
- We can compute $a \cdot b$ in time $\mathcal{O}(\operatorname{len}(a) \operatorname{len}(b))$
- We can compute the quotient $q$ and the remainder $r$ in $a=b \cdot q+r$ in time $\mathcal{O}(\operatorname{len}(b) \operatorname{len}(q))$
- For $a \in \mathbb{Z}$, let len(a) be the number of bits in the binary representation of $|a|$ :
- len $(a)=\left\lfloor\log _{2}|a|\right\rfloor+1$ if $a \neq 0$
- len $(0)=1$

$$
2^{\ln (a)-1} \leq a<2^{\ln (a)} \text { for } a>0
$$

- Let $a$ and $b$ be two arbitrary integers
- We can compute $a \pm b$ in time $\mathcal{O}(\operatorname{len}(a)+\operatorname{len}(b))$
- We can compute $a \cdot b$ in time $\mathcal{O}(\operatorname{len}(a) \operatorname{len}(b))$
- We can compute the quotient $q$ and the remainder $r$ in $a=b \cdot q+r$ in time $\mathcal{O}(\operatorname{len}(b) \operatorname{len}(q))$


## Modular exponentiation

- We want to compute $c=a^{b}(\bmod n)$.
- Example: RSA
- $c=m^{e}(\bmod n)$ where $m$ is the message, $e$ the public exponent, and $n$ the modulus.
- Naive method:
- Multiplying $a$ in total $b$ times by itself modulo $n$
- Very slow: if $b$ is 100 bits, roughly $2^{100}$ multiplications !
- Example: compute $b=a^{16}(\bmod n)$
- $b=a \cdot a \cdot \ldots \cdot a \cdot a(\bmod n)$ : 15 multiplications
- $b=\left(\left(\left(a^{2}\right)^{2}\right)^{2}\right)^{2}(\bmod n): 4$ multiplications


## Square and multiply algorithm

- Let $b=\left(b_{\ell-1} \ldots b_{0}\right)_{2}$ the binary representation of $b$

$$
b=\sum_{i=0}^{\ell-1} b_{i} \cdot 2^{i}
$$

- Square and multiply algorithm :
- Input: $a, b$ and $n$
- Output: $a^{b}(\bmod n)$
- $c \leftarrow 1$
for $i=\ell-1$ down to 0 do
$c \leftarrow c^{2}(\bmod n)$
if $b_{i}=1$ then $c \leftarrow c \cdot a(\bmod n)$
Output $c$
- Complexity: $\mathcal{O}\left(\operatorname{len}(n)^{3}\right)$


## Analysis

- Let $B_{i}$ be the integer with binary representation $\left(b_{\ell-1} \ldots b_{i}\right)_{2}$, and let

$$
c_{i}=a^{B_{i}} \quad(\bmod n)
$$

- Initialization

$$
\left\{\begin{array}{r}
B_{\ell}=0 \\
c_{\ell}=1
\end{array}\right.
$$

- Recursive step

$$
\left\{\begin{aligned}
B_{i} & =2 \cdot B_{i+1}+b_{i} \\
c_{i} & =\left(c_{i+1}\right)^{2} \cdot a^{b_{i}} \quad(\bmod n)
\end{aligned}\right.
$$

- Final step

$$
\left\{\begin{aligned}
B_{0} & =b \\
c_{0} & =a^{b}(\bmod n)
\end{aligned}\right.
$$

## Computing in $\mathbb{Z}_{n}$

- Computing $a+b \bmod n$
- First compute $a+b$ in $\mathbb{Z}$, then reduce modulo $n$
- Complexity: $\mathcal{O}(\operatorname{len}(n))$
- Computing $a \cdot b \bmod n$
- First compute $a \cdot b$ in $\mathbb{Z}$, then reduce modulo $n$
- Complexity: $\mathcal{O}\left(\operatorname{len}(n)^{2}\right)$
- Computing $a^{b} \bmod n$
- Complexity: $\mathcal{O}\left(\operatorname{len}(n)^{3}\right)$


## Primality Testing

- Motivation for prime generation:
- Generate the primes $p$ and $q$ in RSA.
- $p$ and $q$ must be large: at least 512 bits.
- Goal of primality testing:
- Given an integer $n$, determine whether $n$ is prime or composite.
- Simplest algorithm: trial division.
- Test if $n$ is divisible by $2,3,4,5, \ldots$ We can stop at $\sqrt{n}$.
- Algorithm determines if $n$ is prime or composite, and outputs the factors of $n$ if $n$ is composite.
- Very inefficient algorithm
- Requires $\simeq \sqrt{n}$ arithmetic operations.
- If $n$ has 256 bits, then $2^{128}$ arithmetic
operations. If $2^{30}$ operations/s, this
takes $10^{22}$ years


## Primality Testing

- Motivation for prime generation:
- Generate the primes $p$ and $q$ in RSA.
- $p$ and $q$ must be large: at least 512 bits.
- Goal of primality testing:
- Given an integer $n$, determine whether $n$ is prime or composite.
- Simplest algorithm: trial division.
- Test if $n$ is divisible by $2,3,4,5, \ldots$ We can stop at $\sqrt{n}$.
- Algorithm determines if $n$ is prime or composite, and outputs the factors of $n$ if $n$ is composite.
- Very inefficient algorithm
- Requires $\simeq \sqrt{n}$ arithmetic operations.
- If $n$ has 256 bits, then $2^{128}$ arithmetic operations. If $2^{30}$ operations $/ \mathrm{s}$, this takes $10^{22}$ years !


## Probabilistic primality testing

- Goal: describe an efficient probabilistic primality test.
- Can test primality for a 512 -bit integer $n$ in less than a second.
- Probabilistic primality testing.
- The algorithm does not find the prime factors of $n$ when $n$ is composite.
- The algorithm may make a mistake (pretend that an integer $n$ is prime whereas it is composite).
- But the mistake can be made arbitrarily small (e.g. $<2^{-100}$ ), so this makes no difference in practice.


## Distribution of prime numbers

- Let $\pi(x)$ be the number of primes in the interval $[2, x]$.
- Theorem (Prime number theorem)
- $\pi(x) \sim x / \log x$.
- Consequence:
- A random integer between 2 and $x$ is prime with probability $\simeq 1 / \log x$
- A random $n$-bit integer is prime with probability

$$
\frac{1}{\log 2} \cdot \frac{1}{n}
$$

- Prime numbers are relatively frequent
- Fermat's little theorem
- If $n$ is prime and $a$ is an integer between 1 and $n-1$, then $a^{n-1} \equiv 1(\bmod n)$.
- Therefore, if the primality of $n$ is unknown, finding $a \in[1, n-1]$ such that $a^{n-1} \neq 1(\bmod n)$ proves that $n$ is composite.
- Fermat primality test with security parameter $t$.

- Complexity: $\mathcal{O}\left(t \cdot \log ^{3} n\right)$
- Fermat's little theorem
- If $n$ is prime and $a$ is an integer between 1 and $n-1$, then $a^{n-1} \equiv 1(\bmod n)$.
- Therefore, if the primality of $n$ is unknown, finding $a \in[1, n-1]$ such that $a^{n-1} \neq 1(\bmod n)$ proves that $n$ is composite.
- Fermat primality test with security parameter $t$.

For $i=1$ to $t$ do
Choose a random $a \in[2, n-2]$
Compute $r=a^{n-1} \bmod n$
If $r \neq 1$ then return "composite"
Return "prime'

- Complexity: $\mathcal{O}\left(t \cdot \log ^{3} n\right)$


## Analysis of Fermat's test

- Let $L_{n}=\left\{a \in[1, n-1]: a^{n-1} \equiv 1(\bmod n)\right\}$
- Theorem:
- If $n$ is prime, then $L_{n}=\mathbb{Z}_{n}^{*}$. If $n$ is composite and $L_{n} \subsetneq \mathbb{Z}_{n}^{*}$, then $\left|L_{n}\right| \leq(n-1) / 2$.
- Proof:
- If $n$ is prime, $L_{n}=\mathbb{Z}_{n}^{*}$ from Fermat.
- If $n$ is composite, since $L_{n}$ is a sub-group of $\mathbb{Z}_{n}^{*}$ and the order of a subgroup divides the order of the group, $\left|\mathbb{Z}_{n}^{*}\right|=m \cdot\left|L_{n}\right|$ for some integer $m$, with $m>1$ since by assumption $L_{n} \subsetneq \mathbb{Z}_{n}^{*}$

$$
\left|L_{n}\right|=\frac{1}{m}\left|\mathbb{Z}_{n}^{*}\right| \leq \frac{1}{2}\left|\mathbb{Z}_{n}^{*}\right| \leq \frac{n-1}{2}
$$

## Analysis of Fermat's test

- If $n$ is composite and $L_{n} \subsetneq \mathbb{Z}_{n}^{*}$
- then $a^{n-1}=1(\bmod n)$ with probability at most $1 / 2$ for a random $a \in[2, n-2]$.
- The algorithm outputs "prime" wih probability at most $2^{-t}$.
- Unfortunately, there are odd composite numbers $n$ such that $L_{n}=\mathbb{Z}_{n}^{*}$.
- Such numbers are called Carmichael numbers. The smallest Carmichael number is 561
- Carmichael numbers are rare, but there are an infinite number of them, so we cannot ignore them.


## Analysis of Fermat's test

- If $n$ is composite and $L_{n} \subsetneq \mathbb{Z}_{n}^{*}$
- then $a^{n-1}=1(\bmod n)$ with probability at most $1 / 2$ for a random $a \in[2, n-2]$.
- The algorithm outputs "prime" wih probability at most $2^{-t}$.
- Unfortunately, there are odd composite numbers $n$ such that $L_{n}=\mathbb{Z}_{n}^{*}$.
- Such numbers are called Carmichael numbers. The smallest Carmichael number is 561 .
- Carmichael numbers are rare, but there are an infinite number of them, so we cannot ignore them.
- The Miller-Rabin test is a variant of Fermat test with a different $L_{n}$. Write $n-1=m 2^{h}$ for odd $m$.

$$
\left.\begin{array}{rl}
L_{n}^{\prime}=\left\{a \in \mathbb{Z}_{n}^{*}: a^{m 2^{h}}\right. & =1 \text { and } \\
& \text { for } j
\end{array}=0, \ldots, h-1, a^{m 2^{j+1}}=1 \text { implies } a^{m 2^{j}}= \pm 1\right\}
$$

- Illustration for $a \in L_{n}^{\prime}$

| $j$ | 0 | 1 | 2 | $\cdots$ | $h-2$ | $h-1$ | $h$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 1 | $\cdots$ | 1 | 1 | 1 |
| $a^{m 2^{j}}$ | -1 | 1 | 1 | $\cdots$ | 1 | 1 | 1 |
|  | X | -1 | 1 | $\cdots$ | 1 | 1 | 1 |
|  | X | X | X | $\cdots$ | X | -1 | 1 |

- Equivalently

- The Miller-Rabin test is a variant of Fermat test with a different $L_{n}$. Write $n-1=m 2^{h}$ for odd $m$.

$$
\left.\begin{array}{rl}
L_{n}^{\prime}=\left\{a \in \mathbb{Z}_{n}^{*}: a^{m 2^{h}}\right. & =1 \text { and } \\
& \text { for } j
\end{array}=0, \ldots, h-1, a^{m 2^{j+1}}=1 \text { implies } a^{m 2^{j}}= \pm 1\right\}
$$

- Illustration for $a \in L_{n}^{\prime}$

| $j$ | 0 | 1 | 2 | $\cdots$ | $h-2$ | $h-1$ | $h$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a^{m 2^{j}}$ | 1 | 1 | 1 | $\cdots$ | 1 | 1 | 1 |
|  | -1 | 1 | 1 | $\cdots$ | 1 | 1 | 1 |
|  | X | -1 | 1 | $\cdots$ | 1 | 1 | 1 |
|  | X | X | X | $\cdots$ | X | -1 | 1 |

- Equivalently

$$
\begin{aligned}
L_{n}^{\prime}=\left\{a \in \mathbb{Z}_{n}^{*}:\right. & a^{m}=1 \text { or } \\
& a^{m 2^{j}}=-1 \text { for some } \\
& 0 \leq j \leq h-1\}
\end{aligned}
$$

## Miller-Rabin test

$L_{n}^{\prime}=\left\{a \in \mathbb{Z}_{n}^{*}: a^{m 2^{h}}=1\right.$ and

$$
\text { for } \left.j=0, \ldots, h-1, a^{m 2^{j+1}}=1 \text { implies } a^{m 2^{j}}= \pm 1\right\}
$$

where $n-1=m 2^{h}$ for odd $m$.

- Theorem
- If $n$ is prime, then $L_{n}^{\prime}=\mathbb{Z}_{n}^{*}$
- If $n$ is composite, then $\left|L_{n}^{\prime}\right| \leq(n-1) / 4$
- Proof for $n$ prime
- Let $a \in \mathbb{Z}_{n}^{*}$. By Fermat, $a^{m \cdot 2^{h}}=a^{n-1}=1(\bmod n)$
- If $a^{m 2^{j+1}}=1$ for some $0 \leq j \leq h-1$, let $\beta=a^{m 2^{j}}$. Since
$\beta^{2}=a^{m 2^{2+1}}=1$, then $\beta= \pm 1$.
- because a polynomial of degree $d$ has at most $d$ roots modulo a prime.
- Therefore $a \in L_{n}^{\prime}$.


## Miller-Rabin test

$L_{n}^{\prime}=\left\{a \in \mathbb{Z}_{n}^{*}: a^{m 2^{h}}=1\right.$ and

$$
\text { for } \left.j=0, \ldots, h-1, a^{m 2^{j+1}}=1 \text { implies } a^{m 2^{j}}= \pm 1\right\}
$$

where $n-1=m 2^{h}$ for odd $m$.

- Theorem
- If $n$ is prime, then $L_{n}^{\prime}=\mathbb{Z}_{n}^{*}$
- If $n$ is composite, then $\left|L_{n}^{\prime}\right| \leq(n-1) / 4$
- Proof for $n$ prime
- Let $a \in \mathbb{Z}_{n}^{*}$. By Fermat, $a^{m \cdot 2^{h}}=a^{n-1}=1(\bmod n)$
- If $a^{m 2^{j+1}}=1$ for some $0 \leq j \leq h-1$, let $\beta=a^{m 2^{j}}$. Since $\beta^{2}=a^{m 2^{j+1}}=1$, then $\beta= \pm 1$.
- because a polynomial of degree $d$ has at most $d$ roots modulo a prime.
- Therefore $a \in L_{n}^{\prime}$.

```
Algorithm 1 Testing whether \(\alpha \in L_{n}^{\prime}\)
    1: Write \(n-1=2^{h} \cdot m\) for odd \(m\).
    2: \(\beta \leftarrow \alpha^{m}\)
    3: if \(\beta=1\) then return true
    4: for \(j=1\) to \(h-1\) do
    5: \(\quad\) if \(\beta=-1\) then return true
    6: \(\quad\) if \(\beta=+1\) then return false
    7: \(\quad \beta \leftarrow \beta^{2}\)
    8: end for
    9: return false
Algorithm 2 Miller-Rabin test of primality
Input: An odd integer \(n\), and \(t \in \mathbb{Z}\).
    1: repeat \(t\) times
    2: \(\quad\) Generate a random \(\alpha \in \mathbb{Z}_{n}\)
    3: \(\quad\) if \(\alpha \notin L_{n}^{\prime}\) return false
    4: return true
```

```
Algorithm 3 Testing whether \(\alpha \in L_{n}^{\prime}\)
    1: Write \(n-1=2^{h} \cdot m\) for odd \(m\).
    2: \(\beta \leftarrow \alpha^{m}\)
    3: if \(\beta=1\) then return true
    4: for \(j=1\) to \(h-1\) do
    5: \(\quad\) if \(\beta=-1\) then return true
    6: \(\quad\) if \(\beta=+1\) then return false
    7: \(\quad \beta \leftarrow \beta^{2}\)
    8: end for
    9: return false
```

Algorithm 4 Miller-Rabin test of primality
Input: An odd integer $n$, and $t \in \mathbb{Z}$.
1: repeat $t$ times
2: $\quad$ Generate a random $\alpha \in \mathbb{Z}_{n}$
3: $\quad$ if $\alpha \notin L_{n}^{\prime}$ return false
4: return true

- Property
- If $n$ is prime, then the Miller-Rabin test always declares $n$ as prime.
- If $n \geq 3$ is composite, then the probability that the Miller-Rabin test outputs "prime" is less than $\left(\frac{1}{4}\right)^{t}$
- Most widely used test in practice.
- With $t=40$, error probabitility less than $2^{-80}$. Much less than the probability of a hardware failure.
- Can test the primality of a 512 -bit integer in less than a second.
- Complexity: $\mathcal{O}\left(t \cdot \log ^{3} n\right)$


## Random prime number generation

- To generate a random prime integer of size $\ell$ bits
- Generate a random integer $n$ of size $\ell$ bits
- Test its primality with Miller-Rabin.
- If $n$ is declared prime, output $n$, otherwise generate another $n$ again.
- Complexity
- A $\ell$-bit integer is prime with probability $\Omega(1 / \ell)$
- therefore $\mathcal{O}(\ell)$ trials are necessary.
- Each primality test takes $\mathcal{O}\left(t \cdot \ell^{3}\right)$ time, so complexity $\mathcal{O}\left(t \cdot \ell^{4}\right)$
- If a number is composite, only a constant number of Miller-Rabin tests will be required to discard it on average
- complexity $\mathcal{O}\left(\ell^{4}+t \cdot \ell^{3}\right)$


## Random prime number generation

- To generate a random prime integer of size $\ell$ bits
- Generate a random integer $n$ of size $\ell$ bits
- Test its primality with Miller-Rabin.
- If $n$ is declared prime, output $n$, otherwise generate another $n$ again.
- Complexity
- A $\ell$-bit integer is prime with probability $\Omega(1 / \ell)$
- therefore $\mathcal{O}(\ell)$ trials are necessary.
- Each primality test takes $\mathcal{O}\left(t \cdot \ell^{3}\right)$ time, so complexity $\mathcal{O}\left(t \cdot \ell^{4}\right)$
- If a number is composite, only a constant number of Miller-Rabin tests will be required to discard it on average.
- complexity $\mathcal{O}\left(\ell^{4}+t \cdot \ell^{3}\right)$.

