Algorithmic Number Theory and Public-key

Cryptography

Course 3

Jean-Sébastien Coron

University of Luxembourg

March 22, 2018

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The RSA algorithm

@ The RSA algorithm is the most widely-used public-key
encryption algorithm
e Invented in 1977 by Rivest, Shamir and Adleman.
e Used for encryption and signature.
o Widely used in electronic commerce protocols (SSL).

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Public-key encryption

@ Public-key encryption: two keys.

o One key is made public and used to encrypt.

o The other key is kept private and enables to decrypt.
@ Alice wants to send a message to Bob:

e She encrypts it using Bob’s public-key.

e Only Bob can decrypt it using his own private-key.

o Alice and Bob do not need to meet to establish a secure
communication.

@ Security:
e It must be difficult to recover the private-key from the
public-key
e but not enough in practice.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

RSA

@ Key generation:

o Generate two large distinct primes p and g of same bit-size.
Compute n=p-qgand ¢ =(p—1)(g—1).
Select a random integer e, 1 < e < ¢ such that ged(e, ¢) =1
Compute the unique integer d such that

e-d=1(mod ¢)

using the extended Euclidean algorithm.
o The public key is (n, e). The private key is d.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

RSA encryption

@ Encryption
o Given a message m € [0, n — 1] and the recipent’s public-key
(n, e), compute the ciphertext:

c=m° modn

@ Decryption
e Given a ciphertext c, to recover m, compute:

m=c? mod n
@ Message encoding
o The message m is viewed as an integer between 0 and n—1
o One can always interpret a bit-string of length less than
|log, n] as such a number.
e One must be careful: plain RSA encryption is insecure.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Euler function

@ Definition:

o ¢(n) for n > 0 is defined as the number of integers a
comprised between 0 and n — 1 such that ged(a, n) = 1.

o 6(1) = 1, 6(2) = 1, 6(3) = 2, $(4) = 2.
o Equivalently:

o Let Z} be the set of integers a comprised between 0 and n — 1
such that ged(a, n) = 1.
o Then ¢(n) = |Z}).

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

o If p > 2 is prime, then

¢(p)=p—1

@ More generally, for any e > 1,

P(p%)=p°t (p—1)

e For n,m > 0 such that gcd(n, m) = 1, we have:

¢(n-m) = ¢(n) - ¢(m)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Euler's theorem

@ Theorem
e For any integer n > 1 and any integer a such that
gcd(a, n) = 1, we have a®(” =1 mod n.
@ Proof

o Consider the map f : Z% — Z%, such that f(b) = a- b for any
be Z*.
e f is a permutation, therefore :

[Te=]]Gbp=a""-(]]>

beZ beZ beZ;

o Therefore, we obtain a®(™ =1 mod n.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Fermat’s little theorem

@ Theorem

e For any prime p and any integer a %= 0 mod p, we have
aP~! =1 mod p. Moreover, for any integer a, we have a°? = a
mod p.

@ Proof
o Follows from Euler's theorem and ¢(p) = p — 1.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Proof that decryption works

ed — m mod n.

o We must show that m
@ Since e-d =1 mod ¢, there is an integer k such that
e-d=1+k-¢=1+k-(p—1)-(g—1). Therefore we must

show that:
mitk(p=1)-(a-1) — (mod n)

o If m#0 mod p, then by Fermat’s little theorem mP~! =1
(mod p), which gives :

mitk(p—1)-(a-1) — (mod p)

This equality is also true if m =0 (mod p).

This gives m* = m (mod p) for all m.

Similarly, m*® = m (mod q) for all m.

By the Chinese Remainder Theorem, if p # g, then

m* =m (mod n)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Decrypting with CRT

@ Given the factors p and g of n = p- g, instead of computing
m = ¢ mod n, compute:
o m, = c% mod p, where d, = d mod (p — 1)
o mg = c% mod g, where d; = d mod (g — 1)
e Using CRT, find m such that m = m, (mod p) and m = mq
(mod q):

m= (m,- (g~ " mod p)-q+mg-(p ' mod q)-p) mod n

@ Since exponentiation is cubic, this is roughly 4 times faster.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Security of RSA

@ The security of RSA is based on the hardness of factoring.
e Given n = p- g, it should be difficult to recover p and gq.
o No efficient algorithm is known to do that. Best algorithms
have sub-exponential complexity.
e Factoring record: a 768-bit RSA modulus n.
e In practice, one uses at least 1024-bit RSA moduli.

@ However, there are many other lines of attacks.

o Attacks against plain RSA encryption

o Low private / public exponent attacks

e Implementation attacks: timing attacks, power attacks and
fault attacks

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The RSA signature scheme

o Key generation :
e Public modulus: N = p- g where p and g are large primes.
e Public exponent : e
e Private exponent: d, such that d-e =1 mod ¢(N)
@ To sign a message m, the signer computes :
e s=m? mod N
o Only the signer can sign the message.
@ To verify the signature, one checks that:
e m=s° mod N
e Anybody can verify the signature

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Hash-and-sign paradigm

@ There are many attacks on basic RSA signatures:

o Existential forgery: r¢ = m mod N

o Chosen-message attack: (my - mp)? = m¢ - mg mod N
@ To prevent from these attacks, one usually uses a hash

function. The message is first hashed, then padded.
o m— H(m) — 1001 ...0101||H(m)
o Example: PKCS#1 v1.5:
p(m) = 0001 FF....FF00||cgpal/SHA(m)
o ISO 9796-2: u(m) = 6A||m[1]||H(m)|BC
o The signature is then o = pu(m)¢ mod N

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Attacks against RSA

e Factoring
e Equivalence between factoring and breaking RSA 7
@ Mathematical attacks

Attacks against plain RSA encryption and signature
Heuristic countermeasures

Low private / public exponent attacks

Provably secure constructions

@ Implementation attacks

e Timing attacks, power attacks and fault attacks
o Countermeasures

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Factoring attack

o Factoring large integers

e Best factoring algorithm: Number Field Sieve
e Sub-exponential complexity

exp ((c +0(1)) n'/310g?/? n)

for n-bit integer.
o Current factoring record: 768-bit RSA modulus.

@ Use at least 1024-bit RSA moduli
e 2048-bit for long-term security.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Factoring vs breaking RSA

@ Breaking RSA:

o Given (N,e) and y, find x such that y = x* mod N
@ Open problem

o Is breaking RSA equivalent to factoring ?
@ Knowing d is equivalent to factoring

e Probabilistic algorithm (RSA, 1978)
o Deterministic algorithm (A. May 2004, J.S. Coron and A. May
2007)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Elementary attacks

@ Plain RSA encryption: dictionary attack
e If only two possible messages mg and my, then only
co = (mg)¢ mod N and ¢; = (my)¢ mod N.
e = encryption must be probabilistic.
o PKCS#1 vl5h
o u(m) = 0002||r||00||m
o ¢ =pu(m)® mod N
o Still insufficient (Bleichenbacher's attack, 1998)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Attacks against Plain RSA signature

o Existential forgery
e r*=m mod N, so r is signature of m

@ Chosen message attack
o (my-mo)=md-md mod N
@ To prevent from these attacks, one first computes p(m), and
lets s = p(m)? mod N
e ISO 9796-1:

u(m) = 5(m;)s(my_1)mym,_1...s(my)s(mg)meb

o 1SO 9796-2:
p(m) = 6A[|m[1]|[H(m)|[BC

o PKCS#1 v1.5:

p(m) = 0001 FF....FF0O|[cgya |[SHA(m)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Attacks against RSA signatures

@ Desmedt and Odlyzko attack (Crypto 85)

o Based on finding messages m such that p(m) is smooth
(product of small primes only)
Qj
o pu(m;) =[] p;"” for many messages m;.

J
o Solve a linear system and write u(mg) =[] n(m;)
o Then pu(m)? =TI p(m;)¢ mod N

@ Application to ISO 9796-1 and ISO 9796-2 signatures
o Cryptanalysis of ISO 9796-1 (Coron, Naccache, Stern, 1999)
o Cryptanalysis of ISO 9796-2 (Coron, Naccache, Tibouchi,
Weinmann, 2009)
o Extension of Desmedt and Odlyzko attack.
e For ISO 9796-2 the attack is feasible if the output size of the
hash function is small enough.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Low private exponent attacks

@ To reduce decryption time, one could use a small d
o Wiener's attack: recover d if d < N9
@ Boneh and Durfee's attack (1999)

o Recover d if d < N°2°
o Based on lattice reduction and Coppersmith’s technique
e Open problem: extend to d < N®°

@ Conclusion: devastating attack
e Use a full-size d

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Low public exponent attack

@ To reduce encryption time, one can use a small e
o For example e =3 or e =20 + 1
@ Coppersmith’s theorem :
o Let N be an integer and f be a polynomial of degree §. Given
N and f, one can recover in polynomial time all xp such that
f(x0) =0 mod N and xo < N/9.
@ Application: partially known message attack :
o If c = (B||m)® mod N, one can recover m if |m| < |N|/3
o Define f(x) = (B-2¥ +x)3 —c mod N.
e Then f(m) =0 mod N and apply Coppersmith’s theorem to
recover m.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Low public exponent attack

o Coppersmith's short pad attack

Let ¢ = (m|/r1)> mod N and c; = (m|/rz)> mod N

One can recover m if ri, rn < N1/

Let gi(x,y) = x> — a1 and g(x,y) = (x +y)* — &

g1 and gz have a common root (m||ry, r» — r;) modulo N.
h(y) = Resx(g1,82) has a root A = r, — ry, with degh = 9.
To recover m||ry, take ged of gi(x, A) and go(x, A).

@ Conclusion:

e Attack only works for particular encryption schemes.
o Low public exponent is secure when provably secure
construction is used. One often takes e = 216 + 1.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Implementation attacks

@ The implementation of a cryptographic algorithm can reveal
more information

@ Passive attacks :

o Timing attacks (Kocher, 1996): measure the execution time
o Power attacks (Kocher et al., 1999): measure the power
consumption

@ Active attacks :

o Fault attacks (Boneh et al., 1997): induce a fault during
computation

e Invasive attacks: probing.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

@ Described on RSA by Kocher at Crypto 96.
o letd=>", 2id;.
e Computing m? mod N using square and multiply :
o Letz+m
For i = n — 1 downto 0 do
Let z < z*> mod N
Ifd=1letz<z-m mod N
e Attack
o Let T; be the total time needed to compute m;j mod N
o Let t; be the time needed to compute m3> mod N
o If d,_1 =1, the variables t; and T; are correlated, otherwise
they are independent. This gives d,_1.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Countermeasures

Implement in constant time
o Not always possible with hardware crypto-processors.

Exponent blinding:

o Compute matke(N) —
Message blinding

o Compute (m-r)¥/r? = m? mod N for random r.

9 mod N for random k.

Modulus randomization

o Compute m? mod (N - r) and reduce modulo N.

@ or a combination of the three.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Power attacks

@ Based on measuring power consumption
e Introduced by Kocher et al. at Crypto 99.
o Initially applied on DES, but any cryptographic algorithm is
vulnerable.
o Attack against exponentiation m? mod N :

o If power consumption correlated with some bits of m®> mod N,
this means that m® mod N was effectively computed, and so
dp—1=1.

o Enables to recover d,_; and by recursion the full d.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Countermeasures

@ Hardware countermeasures

e Constant power consumption; dual rail logic.
e Random delays to desynchronise signals.

@ Software countermeasures

e Same as for timing attacks
e Goal: randomization of execution
o Drawback: increases execution time.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Fault attacks

@ Induce a fault during computation
e By modifying voltage input

@ RSA with CRT: to compute s = m? mod N, compute :

° sp:mdp mod p where d, =d mod p—1

o s, = m% mod q where d; =d mod q—1
o and recombine s, and s, using CRT to get s = m? mod N

e Fault attack against RSA with CRT (Boneh et al., 1996)

o If s, is incorrect, then s* # m mod N while s* =m mod g
o Therefore, gcd(N, s¢ — m) gives the prime factor g.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Possible projects

@ Implementation of RSA: big integer library.

@ Factoring algorithms. Implementation of Pollard’s rho
algorithm or quadratic sieve

@ Implementation attacks against RSA. Simulation of a
side-channel attack.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

