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The RSA algorithm

The RSA algorithm is the most widely-used public-key
encryption algorithm

Invented in 1977 by Rivest, Shamir and Adleman.
Used for encryption and signature.
Widely used in electronic commerce protocols (SSL).

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography



Public-key encryption

Public-key encryption: two keys.

One key is made public and used to encrypt.
The other key is kept private and enables to decrypt.

Alice wants to send a message to Bob:

She encrypts it using Bob’s public-key.
Only Bob can decrypt it using his own private-key.
Alice and Bob do not need to meet to establish a secure
communication.

Security:

It must be difficult to recover the private-key from the
public-key
but not enough in practice.
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RSA

Key generation:

Generate two large distinct primes p and q of same bit-size.
Compute n = p · q and φ = (p − 1)(q − 1).
Select a random integer e, 1 < e < φ such that gcd(e, φ) = 1
Compute the unique integer d such that

e · d ≡ 1( mod φ)

using the extended Euclidean algorithm.
The public key is (n, e). The private key is d .
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RSA encryption

Encryption

Given a message m ∈ [0, n − 1] and the recipent’s public-key
(n, e), compute the ciphertext:

c = me mod n

Decryption

Given a ciphertext c , to recover m, compute:

m = cd mod n

Message encoding

The message m is viewed as an integer between 0 and n − 1
One can always interpret a bit-string of length less than
blog2 nc as such a number.
One must be careful: plain RSA encryption is insecure.
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Euler function

Definition:

φ(n) for n > 0 is defined as the number of integers a
comprised between 0 and n − 1 such that gcd(a, n) = 1.
φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2.

Equivalently:

Let Z∗n be the set of integers a comprised between 0 and n − 1
such that gcd(a, n) = 1.
Then φ(n) = |Z∗n|.
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Properties

If p ≥ 2 is prime, then

φ(p) = p − 1

More generally, for any e ≥ 1,

φ(pe) = pe−1 · (p − 1)

For n,m > 0 such that gcd(n,m) = 1, we have:

φ(n ·m) = φ(n) · φ(m)
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Euler’s theorem

Theorem

For any integer n > 1 and any integer a such that
gcd(a, n) = 1, we have aφ(n) ≡ 1 mod n.

Proof

Consider the map f : Z∗n → Z∗n, such that f (b) = a · b for any
b ∈ Z∗.
f is a permutation, therefore :

∏
b∈Z∗

n

b =
∏
b∈Z∗

n

(a · b) = aφ(n) ·

∏
b∈Z∗

n

b


Therefore, we obtain aφ(n) ≡ 1 mod n.
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Fermat’s little theorem

Theorem

For any prime p and any integer a 6= 0 mod p, we have
ap−1 ≡ 1 mod p. Moreover, for any integer a, we have ap ≡ a
mod p.

Proof

Follows from Euler’s theorem and φ(p) = p − 1.
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Proof that decryption works

We must show that med = m mod n.

Since e · d ≡ 1 mod φ, there is an integer k such that
e · d = 1 + k · φ = 1 + k · (p − 1) · (q − 1). Therefore we must
show that:

m1+k·(p−1)·(q−1) ≡ m (mod n)

If m 6= 0 mod p, then by Fermat’s little theorem mp−1 ≡ 1
(mod p), which gives :

m1+k·(p−1)·(q−1) ≡ m (mod p)

This equality is also true if m ≡ 0 (mod p).
This gives med ≡ m (mod p) for all m.
Similarly, med ≡ m (mod q) for all m.
By the Chinese Remainder Theorem, if p 6= q, then

med ≡ m (mod n)
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Decrypting with CRT

Given the factors p and q of n = p · q, instead of computing
m = cd mod n, compute:

mp = cdp mod p, where dp = d mod (p − 1)
mq = cdq mod q, where dq = d mod (q − 1)
Using CRT, find m such that m ≡ mp (mod p) and m ≡ mq

(mod q):

m =
(
mp · (q−1 mod p) · q + mq · (p−1 mod q) · p

)
mod n

Since exponentiation is cubic, this is roughly 4 times faster.
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Security of RSA

The security of RSA is based on the hardness of factoring.

Given n = p · q, it should be difficult to recover p and q.
No efficient algorithm is known to do that. Best algorithms
have sub-exponential complexity.
Factoring record: a 768-bit RSA modulus n.
In practice, one uses at least 1024-bit RSA moduli.

However, there are many other lines of attacks.

Attacks against plain RSA encryption
Low private / public exponent attacks
Implementation attacks: timing attacks, power attacks and
fault attacks
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The RSA signature scheme

Key generation :

Public modulus: N = p · q where p and q are large primes.
Public exponent : e
Private exponent: d , such that d · e = 1 mod φ(N)

To sign a message m, the signer computes :

s = md mod N
Only the signer can sign the message.

To verify the signature, one checks that:

m = se mod N
Anybody can verify the signature
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Hash-and-sign paradigm

There are many attacks on basic RSA signatures:

Existential forgery: r e = m mod N
Chosen-message attack: (m1 ·m2)d = md

1 ·md
2 mod N

To prevent from these attacks, one usually uses a hash
function. The message is first hashed, then padded.

m −→ H(m) −→ 1001 . . . 0101‖H(m)
Example: PKCS#1 v1.5:
µ(m) = 0001 FF....FF00||cSHA||SHA(m)
ISO 9796-2: µ(m) = 6A‖m[1]‖H(m)‖BC
The signature is then σ = µ(m)d mod N
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Attacks against RSA

Factoring

Equivalence between factoring and breaking RSA ?

Mathematical attacks

Attacks against plain RSA encryption and signature
Heuristic countermeasures
Low private / public exponent attacks
Provably secure constructions

Implementation attacks

Timing attacks, power attacks and fault attacks
Countermeasures
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Factoring attack

Factoring large integers

Best factoring algorithm: Number Field Sieve
Sub-exponential complexity

exp
(

(c + ◦(1)) n1/3 log2/3 n
)

for n-bit integer.
Current factoring record: 768-bit RSA modulus.

Use at least 1024-bit RSA moduli

2048-bit for long-term security.
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Factoring vs breaking RSA

Breaking RSA:

Given (N, e) and y , find x such that y = xe mod N

Open problem

Is breaking RSA equivalent to factoring ?

Knowing d is equivalent to factoring

Probabilistic algorithm (RSA, 1978)
Deterministic algorithm (A. May 2004, J.S. Coron and A. May
2007)
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Elementary attacks

Plain RSA encryption: dictionary attack

If only two possible messages m0 and m1, then only
c0 = (m0)e mod N and c1 = (m1)e mod N.
⇒ encryption must be probabilistic.

PKCS#1 v1.5

µ(m) = 0002‖r‖00‖m
c = µ(m)e mod N
Still insufficient (Bleichenbacher’s attack, 1998)
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Attacks against Plain RSA signature

Existential forgery

r e = m mod N, so r is signature of m

Chosen message attack

(m1 ·m2)d = md
1 ·md

2 mod N

To prevent from these attacks, one first computes µ(m), and
lets s = µ(m)d mod N

ISO 9796-1:

µ(m) = s̄(mz)s(mz−1)mzmz−1 . . . s(m1)s(m0)m06

ISO 9796-2:
µ(m) = 6A‖m[1]‖H(m)‖BC

PKCS#1 v1.5:

µ(m) = 0001 FF....FF00||cSHA||SHA(m)
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Attacks against RSA signatures

Desmedt and Odlyzko attack (Crypto 85)

Based on finding messages m such that µ(m) is smooth
(product of small primes only)
µ(mi ) =

∏
j

p
αi,j

j for many messages mi .

Solve a linear system and write µ(mk) =
∏
i

µ(mi )

Then µ(mk)d =
∏
i

µ(mi )
d mod N

Application to ISO 9796-1 and ISO 9796-2 signatures

Cryptanalysis of ISO 9796-1 (Coron, Naccache, Stern, 1999)
Cryptanalysis of ISO 9796-2 (Coron, Naccache, Tibouchi,
Weinmann, 2009)
Extension of Desmedt and Odlyzko attack.
For ISO 9796-2 the attack is feasible if the output size of the
hash function is small enough.
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Low private exponent attacks

To reduce decryption time, one could use a small d

Wiener’s attack: recover d if d < N0.25

Boneh and Durfee’s attack (1999)

Recover d if d < N0.29

Based on lattice reduction and Coppersmith’s technique
Open problem: extend to d < N0.5

Conclusion: devastating attack

Use a full-size d
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Low public exponent attack

To reduce encryption time, one can use a small e

For example e = 3 or e = 216 + 1

Coppersmith’s theorem :

Let N be an integer and f be a polynomial of degree δ. Given
N and f , one can recover in polynomial time all x0 such that
f (x0) = 0 mod N and x0 < N1/δ.

Application: partially known message attack :

If c = (B‖m)3 mod N, one can recover m if |m| < |N|/3
Define f (x) = (B · 2k + x)3 − c mod N.
Then f (m) = 0 mod N and apply Coppersmith’s theorem to
recover m.
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Low public exponent attack

Coppersmith’s short pad attack

Let c1 = (m‖r1)3 mod N and c2 = (m‖r2)3 mod N
One can recover m if r1, r2 < N1/9

Let g1(x , y) = x3 − c1 and g2(x , y) = (x + y)3 − c2.
g1 and g2 have a common root (m‖r1, r2 − r1) modulo N.
h(y) = Resx(g1, g2) has a root ∆ = r2 − r1, with deg h = 9.
To recover m‖r1, take gcd of g1(x ,∆) and g2(x ,∆).

Conclusion:

Attack only works for particular encryption schemes.
Low public exponent is secure when provably secure
construction is used. One often takes e = 216 + 1.
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Implementation attacks

The implementation of a cryptographic algorithm can reveal
more information

Passive attacks :

Timing attacks (Kocher, 1996): measure the execution time
Power attacks (Kocher et al., 1999): measure the power
consumption

Active attacks :

Fault attacks (Boneh et al., 1997): induce a fault during
computation
Invasive attacks: probing.
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Timing attacks

Described on RSA by Kocher at Crypto 96.

Let d =
∑n

i=0 2idi .
Computing md mod N using square and multiply :

Let z ← m
For i = n − 1 downto 0 do

Let z ← z2 mod N
If di = 1 let z ← z ·m mod N

Attack

Let Ti be the total time needed to compute md
i mod N

Let ti be the time needed to compute m3
i mod N

If dn−1 = 1, the variables ti and Ti are correlated, otherwise
they are independent. This gives dn−1.
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Countermeasures

Implement in constant time

Not always possible with hardware crypto-processors.

Exponent blinding:

Compute md+k·φ(N) = md mod N for random k.

Message blinding

Compute (m · r)d/rd = md mod N for random r .

Modulus randomization

Compute md mod (N · r) and reduce modulo N.

or a combination of the three.
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Power attacks

Based on measuring power consumption

Introduced by Kocher et al. at Crypto 99.
Initially applied on DES, but any cryptographic algorithm is
vulnerable.

Attack against exponentiation md mod N :

If power consumption correlated with some bits of m3 mod N,
this means that m3 mod N was effectively computed, and so
dn−1 = 1.
Enables to recover dn−1 and by recursion the full d .
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Countermeasures

Hardware countermeasures

Constant power consumption; dual rail logic.
Random delays to desynchronise signals.

Software countermeasures

Same as for timing attacks
Goal: randomization of execution
Drawback: increases execution time.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography



Fault attacks

Induce a fault during computation

By modifying voltage input

RSA with CRT: to compute s = md mod N, compute :

sp = mdp mod p where dp = d mod p − 1
sq = mdq mod q where dq = d mod q − 1
and recombine sp and sq using CRT to get s = md mod N

Fault attack against RSA with CRT (Boneh et al., 1996)

If sp is incorrect, then se 6= m mod N while se = m mod q
Therefore, gcd(N, se −m) gives the prime factor q.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography



Possible projects

Implementation of RSA: big integer library.

Factoring algorithms. Implementation of Pollard’s rho
algorithm or quadratic sieve

Implementation attacks against RSA. Simulation of a
side-channel attack.
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