Algorithmic Number Theory and Public-key Cryptography Course 3

Jean-Sébastien Coron

University of Luxembourg

March 22, 2018

The RSA algorithm

- The RSA algorithm is the most widely-used public-key encryption algorithm
 - Invented in 1977 by Rivest, Shamir and Adleman.
 - Used for encryption and signature.
 - Widely used in electronic commerce protocols (SSL).

Public-key encryption

- Public-key encryption: two keys.
 - One key is made public and used to encrypt.
 - The other key is kept private and enables to decrypt.
- Alice wants to send a message to Bob:
 - She encrypts it using Bob's public-key.
 - Only Bob can decrypt it using his own private-key.
 - Alice and Bob do not need to meet to establish a secure communication.
- Security:
 - It must be difficult to recover the private-key from the public-key
 - but not enough in practice.

• Key generation:

- Generate two large distinct primes p and q of same bit-size.
- Compute $n = p \cdot q$ and $\phi = (p-1)(q-1)$.
- Select a random integer e, $1 < e < \phi$ such that $\gcd(e, \phi) = 1$
- Compute the unique integer d such that

$$e \cdot d \equiv 1 \pmod{\phi}$$

using the extended Euclidean algorithm.

• The public key is (n, e). The private key is d.

Encryption

• Given a message $m \in [0, n-1]$ and the recipent's public-key (n, e), compute the ciphertext:

$$c = m^e \mod n$$

Decryption

• Given a ciphertext c, to recover m, compute:

$$m = c^d \mod n$$

- Message encoding
 - The message m is viewed as an integer between 0 and n-1
 - One can always interpret a bit-string of length less than $\lfloor \log_2 n \rfloor$ as such a number.
 - One must be careful: plain RSA encryption is insecure.

• Definition:

 φ(n) for n > 0 is defined as the number of integers a
 comprised between 0 and n − 1 such that gcd(a, n) = 1.

•
$$\phi(1) = 1$$
, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(4) = 2$.

- Equivalently:
 - Let \mathbb{Z}_n^* be the set of integers *a* comprised between 0 and n-1 such that gcd(a, n) = 1.

• Then
$$\phi(n) = |\mathbb{Z}_n^*|$$
.

• If $p \ge 2$ is prime, then

$$\phi(p) = p - 1$$

• More generally, for any $e \geq 1$,

$$\phi(p^e) = p^{e-1} \cdot (p-1)$$

• For n, m > 0 such that gcd(n, m) = 1, we have:

$$\phi(\mathbf{n}\cdot\mathbf{m})=\phi(\mathbf{n})\cdot\phi(\mathbf{m})$$

- Theorem
 - For any integer n > 1 and any integer a such that gcd(a, n) = 1, we have $a^{\phi(n)} \equiv 1 \mod n$.
- Proof
 - Consider the map $f : \mathbb{Z}_n^* \to \mathbb{Z}_n^*$, such that $f(b) = a \cdot b$ for any $b \in \mathbb{Z}^*$.
 - f is a permutation, therefore :

$$\prod_{b\in\mathbb{Z}_n^*}b=\prod_{b\in\mathbb{Z}_n^*}(a\cdot b)=a^{\phi(n)}\cdot\left(\prod_{b\in\mathbb{Z}_n^*}b\right)$$

• Therefore, we obtain $a^{\phi(n)} \equiv 1 \mod n$.

Theorem

- For any prime p and any integer a ≠ 0 mod p, we have a^{p-1} ≡ 1 mod p. Moreover, for any integer a, we have a^p ≡ a mod p.
- Proof
 - Follows from Euler's theorem and $\phi(p) = p 1$.

Proof that decryption works

- We must show that $m^{ed} = m \mod n$.
- Since $e \cdot d \equiv 1 \mod \phi$, there is an integer k such that $e \cdot d = 1 + k \cdot \phi = 1 + k \cdot (p-1) \cdot (q-1)$. Therefore we must show that:

$$m^{1+k\cdot(p-1)\cdot(q-1)} \equiv m \pmod{n}$$

If m ≠ 0 mod p, then by Fermat's little theorem m^{p-1} ≡ 1 (mod p), which gives :

$$m^{1+k\cdot(p-1)\cdot(q-1)} \equiv m \pmod{p}$$

- This equality is also true if $m \equiv 0 \pmod{p}$.
- This gives $m^{ed} \equiv m \pmod{p}$ for all m.
- Similarly, $m^{ed} \equiv m \pmod{q}$ for all m.
- By the Chinese Remainder Theorem, if $p \neq q$, then

$$m^{ed} \equiv m \pmod{n}$$

伺 ト イ ヨ ト イ ヨ ト

- Given the factors p and q of $n = p \cdot q$, instead of computing $m = c^d \mod n$, compute:
 - $m_p = c^{d_p} \mod p$, where $d_p = d \mod (p-1)$
 - $m_q = c^{d_q} \mod q$, where $d_q = d \mod (q-1)$
 - Using CRT, find m such that $m \equiv m_p \pmod{p}$ and $m \equiv m_q \pmod{q}$:

$$m = \left(m_p \cdot (q^{-1} mod p) \cdot q + m_q \cdot (p^{-1} mod q) \cdot p
ight) mod n$$

• Since exponentiation is cubic, this is roughly 4 times faster.

Security of RSA

- The security of RSA is based on the hardness of factoring.
 - Given $n = p \cdot q$, it should be difficult to recover p and q.
 - No efficient algorithm is known to do that. Best algorithms have sub-exponential complexity.
 - Factoring record: a 768-bit RSA modulus n.
 - In practice, one uses at least 1024-bit RSA moduli.
- However, there are many other lines of attacks.
 - Attacks against plain RSA encryption
 - Low private / public exponent attacks
 - Implementation attacks: timing attacks, power attacks and fault attacks

- Key generation :
 - Public modulus: $N = p \cdot q$ where p and q are large primes.
 - Public exponent : e
 - Private exponent: d, such that $d \cdot e = 1 \mod \phi(N)$
- To sign a message *m*, the signer computes :
 - $s = m^d \mod N$
 - Only the signer can sign the message.
- To verify the signature, one checks that:
 - $m = s^e \mod N$
 - Anybody can verify the signature

- There are many attacks on basic RSA signatures:
 - Existential forgery: $r^e = m \mod N$
 - Chosen-message attack: $(m_1 \cdot m_2)^d = m_1^d \cdot m_2^d \mod N$
- To prevent from these attacks, one usually uses a hash function. The message is first hashed, then padded.
 - $m \longrightarrow H(m) \longrightarrow 1001 \dots 0101 \| H(m)$
 - Example: PKCS#1 v1.5: μ(m) = 0001 FF....FF00||c_{SHA}||SHA(m)
 - ISO 9796-2: $\mu(m) = 6A \|m[1]\| H(m) \|BC$
 - The signature is then $\sigma = \mu(m)^d \mod N$

- Factoring
 - Equivalence between factoring and breaking RSA ?
- Mathematical attacks
 - Attacks against plain RSA encryption and signature
 - Heuristic countermeasures
 - Low private / public exponent attacks
 - Provably secure constructions
- Implementation attacks
 - Timing attacks, power attacks and fault attacks
 - Countermeasures

• Factoring large integers

- Best factoring algorithm: Number Field Sieve
- Sub-exponential complexity

$$\exp\left(\left(c+\circ(1)\right)n^{1/3}\log^{2/3}n\right)$$

for *n*-bit integer.

- Current factoring record: 768-bit RSA modulus.
- Use at least 1024-bit RSA moduli
 - 2048-bit for long-term security.

- Breaking RSA:
 - Given (N, e) and y, find x such that $y = x^e \mod N$
- Open problem
 - Is breaking RSA equivalent to factoring ?
- Knowing *d* is equivalent to factoring
 - Probabilistic algorithm (RSA, 1978)
 - Deterministic algorithm (A. May 2004, J.S. Coron and A. May 2007)

• Plain RSA encryption: dictionary attack

- If only two possible messages m_0 and m_1 , then only $c_0 = (m_0)^e \mod N$ and $c_1 = (m_1)^e \mod N$.
- \Rightarrow encryption must be probabilistic.
- PKCS#1 v1.5
 - $\mu(m) = 0002 \|r\|00\|m$
 - $c = \mu(m)^e \mod N$
 - Still insufficient (Bleichenbacher's attack, 1998)

Attacks against Plain RSA signature

Existential forgery

• $r^e = m \mod N$, so r is signature of m

• Chosen message attack

•
$$(m_1\cdot m_2)^d=m_1^d\cdot m_2^d \mod N$$

- To prevent from these attacks, one first computes $\mu(m)$, and lets $s = \mu(m)^d \mod N$
 - ISO 9796-1:

$$\mu(m) = \bar{s}(m_z)s(m_{z-1})m_zm_{z-1}\dots s(m_1)s(m_0)m_06$$

• ISO 9796-2:

$$\mu(m) = 6\mathbb{A} \|m[1]\|H(m)\|\mathsf{BC}$$

• PKCS#1 v1.5:

$$\mu(m) = 0001 \text{ FF}...\text{FF00}||c_{\text{SHA}}||\text{SHA}(m)$$

Attacks against RSA signatures

- Desmedt and Odlyzko attack (Crypto 85)
 - Based on finding messages m such that μ(m) is smooth (product of small primes only)
 - $\mu(m_i) = \prod_i p_j^{\alpha_{i,j}}$ for many messages m_i .
 - Solve a linear system and write $\mu(m_k) = \prod \mu(m_i)$

• Then
$$\mu(m_k)^d = \prod_i \mu(m_i)^d \mod N$$

- Application to ISO 9796-1 and ISO 9796-2 signatures
 - Cryptanalysis of ISO 9796-1 (Coron, Naccache, Stern, 1999)
 - Cryptanalysis of ISO 9796-2 (Coron, Naccache, Tibouchi, Weinmann, 2009)
 - Extension of Desmedt and Odlyzko attack.
 - For ISO 9796-2 the attack is feasible if the output size of the hash function is small enough.

- To reduce decryption time, one could use a small d
 - Wiener's attack: recover d if $d < N^{0.25}$
- Boneh and Durfee's attack (1999)
 - Recover d if $d < N^{0.29}$
 - Based on lattice reduction and Coppersmith's technique
 - Open problem: extend to $d < N^{0.5}$
- Conclusion: devastating attack
 - Use a full-size d

Low public exponent attack

- To reduce encryption time, one can use a small e
 - For example e = 3 or $e = 2^{16} + 1$
- Coppersmith's theorem :
 - Let N be an integer and f be a polynomial of degree δ . Given N and f, one can recover in polynomial time all x_0 such that $f(x_0) = 0 \mod N$ and $x_0 < N^{1/\delta}$.
- Application: partially known message attack :
 - If $c = (B||m)^3 \mod N$, one can recover m if |m| < |N|/3
 - Define $f(x) = (B \cdot 2^k + x)^3 c \mod N$.
 - Then $f(m) = 0 \mod N$ and apply Coppersmith's theorem to recover m.

Low public exponent attack

Coppersmith's short pad attack

- Let $c_1 = (m \| r_1)^3 \mod N$ and $c_2 = (m \| r_2)^3 \mod N$
- One can recover m if $r_1, r_2 < N^{1/9}$
- Let $g_1(x, y) = x^3 c_1$ and $g_2(x, y) = (x + y)^3 c_2$.
- g_1 and g_2 have a common root $(m||r_1, r_2 r_1)$ modulo N.
- $h(y) = \operatorname{Res}_{x}(g_{1}, g_{2})$ has a root $\Delta = r_{2} r_{1}$, with deg h = 9.
- To recover $m \| r_1$, take gcd of $g_1(x, \Delta)$ and $g_2(x, \Delta)$.
- Conclusion:
 - Attack only works for particular encryption schemes.
 - Low public exponent is secure when provably secure construction is used. One often takes e = 2¹⁶ + 1.

- The implementation of a cryptographic algorithm can reveal more information
- Passive attacks :
 - Timing attacks (Kocher, 1996): measure the execution time
 - Power attacks (Kocher et al., 1999): measure the power consumption
- Active attacks :
 - Fault attacks (Boneh et al., 1997): induce a fault during computation
 - Invasive attacks: probing.

Timing attacks

• Described on RSA by Kocher at Crypto 96.

• Let
$$d = \sum_{i=0}^{n} 2^{i} d_{i}$$
.

• Computing $m^d \mod N$ using square and multiply :

• Let
$$z \leftarrow m$$

For $i = n - 1$ downto 0 do
Let $z \leftarrow z^2 \mod N$
If $d_i = 1$ let $z \leftarrow z \cdot m \mod N$

Attack

- Let T_i be the total time needed to compute $m_i^d \mod N$
- Let t_i be the time needed to compute $m_i^3 \mod N$
- If d_{n-1} = 1, the variables t_i and T_i are correlated, otherwise they are independent. This gives d_{n-1}.

- Implement in constant time
 - Not always possible with hardware crypto-processors.
- Exponent blinding:
 - Compute $m^{d+k\cdot\phi(N)} = m^d \mod N$ for random k.
- Message blinding
 - Compute $(m \cdot r)^d / r^d = m^d \mod N$ for random r.
- Modulus randomization
 - Compute $m^d \mod (N \cdot r)$ and reduce modulo N.
- or a combination of the three.

- Based on measuring power consumption
 - Introduced by Kocher et al. at Crypto 99.
 - Initially applied on DES, but any cryptographic algorithm is vulnerable.
- Attack against exponentiation $m^d \mod N$:
 - If power consumption correlated with some bits of $m^3 \mod N$, this means that $m^3 \mod N$ was effectively computed, and so $d_{n-1} = 1$.
 - Enables to recover d_{n-1} and by recursion the full d.

Hardware countermeasures

- Constant power consumption; dual rail logic.
- Random delays to desynchronise signals.
- Software countermeasures
 - Same as for timing attacks
 - Goal: randomization of execution
 - Drawback: increases execution time.

- Induce a fault during computation
 - By modifying voltage input
- RSA with CRT: to compute $s = m^d \mod N$, compute :
 - $s_p = m^{d_p} \mod p$ where $d_p = d \mod p 1$
 - $s_q = m^{d_q} \mod q$ where $d_q = d \mod q 1$
 - and recombine s_p and s_q using CRT to get $s = m^d \mod N$
- Fault attack against RSA with CRT (Boneh et al., 1996)
 - If s_p is incorrect, then $s^e \neq m \mod N$ while $s^e = m \mod q$
 - Therefore, $gcd(N, s^e m)$ gives the prime factor q.

- Implementation of RSA: big integer library.
- Factoring algorithms. Implementation of Pollard's rho algorithm or quadratic sieve
- Implementation attacks against RSA. Simulation of a side-channel attack.