
The RSA cryptosystem
Part 2: attacks against RSA

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron The RSA cryptosystem

The RSA cryptosystem

RSA key generation:

Generate two large distinct primes p and q of same bit-size
k/2, where k is a parameter.
Compute N = p · q and φ = (p − 1)(q − 1).
Select a random integer e, 1 < e < φ such that gcd(e, φ) = 1
Compute the unique integer d such that

e · d ≡ 1 (mod φ)

using the extended Euclidean algorithm.
The public key is (N, e).
The private key is d .

Jean-Sébastien Coron The RSA cryptosystem

Textbook RSA encryption

Encryption

Given a message m ∈ [0,N − 1] and the recipent’s public-key
(n, e), compute the ciphertext:

c = me mod N

Decryption

Given a ciphertext c , to recover m, compute:

m = cd mod N

Textbook RSA encryption is insecure

One must first apply a probabilistic encoding to m
Encryption: c = µ(m, r)e mod N
Decryption: compute cd mod N, check
that the encoding is correct, and
recover m
Example: OAEP

Jean-Sébastien Coron The RSA cryptosystem

Attacks against RSA

Mathematical attacks against RSA

Factoring. Elementary attacks against textbook RSA
encryption and signature. Previous lecture.
Low private / public exponent attacks. Coppersmith’s
technique. This lecture.
Attacks against RSA signatures. Next lecture.

Implementation attacks

Timing attacks, power attacks and fault attacks
Countermeasures

Jean-Sébastien Coron The RSA cryptosystem

Low private exponent attacks

To reduce decryption time, one could use a small d

m = cd mod N
Decryption time is proportional to the bitsize of d
First generate a small d , and compute the (full-size) e such
that e · d = 1 (mod φ(N))

Wiener’s attack

recover d if d < N0.25

based on rational reconstruction

Jean-Sébastien Coron The RSA cryptosystem

Rational reconstruction

Rational reconstruction

Given u, e such that a · u ≡ b (mod e) with 2|a| · |b| < e,
recover the integers a and b.

Can be solved by modifying the extended Euclidean algorithm

The extended Euclidean algorithm computes a sequence ai , bi
such that ai · u ≡ bi (mod e), where ai is increasing, and bi is
decreasing.
Stop when |ai | ≤ A and |bi | ≤ B for upper-bounds A, B with
2A · B < e

Jean-Sébastien Coron The RSA cryptosystem

Wiener’s attack on small d

We have d · e = 1 + a · φ(N) for some a ∈ Z
With φ(N) = (p − 1)(q − 1) = N − x , this gives:

a · (N − x) ≡ −1 (mod e)

This gives a · N ≡ u (mod e) with u = ax − 1

If d ' N1/4, then a ' N1/4 and u ' N3/4.
Since |a| · |u| ' N ' e, we can recover a and u by rational
reconstruction.

From a and u, we recover x . From x
we recover φ(N). From e and φ(N)
we recover the private exponent d .

Jean-Sébastien Coron The RSA cryptosystem

Extension of Wiener’s attack

Wiener’s attack

recover d if d < N0.25

Boneh and Durfee’s attack (1999)

Recover d if d < N0.29

Based on lattice reduction and Coppersmith’s technique
Open problem: extend to d < N0.5

Conclusion: devastating attack

Use a full-size d

Jean-Sébastien Coron The RSA cryptosystem

Low public exponent attack

To reduce encryption time, one can use a small e

c = me mod N
For example e = 3 or e = 216 + 1

Coppersmith’s theorem :

Let N be an integer and f be a polynomial of degree δ. Given
N and f , one can recover in polynomial time all x0 such that
f (x0) = 0 (mod N) and |x0| < N1/δ.

Application: partially known message attack :

If c = (B‖m)3 mod N, one can recover m if sz(m) < sz(N)/3
Define f (x) = (B · 2k + x)3 − c (mod N).
Then f (m) = 0 (mod N) and apply
Coppersmith’s theorem to recover m.

Jean-Sébastien Coron The RSA cryptosystem

Coppersmith’s theorem for solving modular polynomial
equations

Solving f (x) = 0 (mod N) when N is of unknown
factorization: hard problem.

For f (x) = x2 − a, equivalent to factoring N.
For f (x) = xe − a, equivalent to inverting RSA.

Coppersmith showed (E96) that finding small roots is easy.

When deg f = δ, finds in polynomial time all integer x0 such
that f (x0) = 0 (mod N) and |x0| ≤ N1/δ.
Based on the LLL lattice reduction algorithm.

Jean-Sébastien Coron The RSA cryptosystem

Coppersmith’s bound

Coppersmith’s theorem

When deg f = δ, finds in polynomial time all integer x0 such
that f (x0) ≡ 0 (mod N) and |x0| ≤ N1/δ.

Consider the particular case f (x) = xδ − a

We want to solve f (x0) = 0 (mod N) with |x0|δ < N
This gives (x0)δ ≡ a (mod N) with |x0|δ < N
This implies (x0)δ = a over Z
x0 = a1/δ over Z

Coppersmith’s theorem is a generalization to any polynomial
f (x) modulo N of degree δ,
with the same bound.

Jean-Sébastien Coron The RSA cryptosystem

Applications in cryptanalysis

Coppersmith’s technique for finding small roots of polynomial
equations [Cop97]

Based on the LLL lattice reduction algorithm

Numerous applications in cryptanalysis :

Partially known message attack with c = (B‖m)3 (mod N)
Coppersmith’s short pad attack with c1 = (m‖r1)3 (mod N)
and c2 = (m‖r2)3 (mod N)
Factoring N = pq when half of the bits of p are known
Factoring N = prq for large r (Boneh et al., C99).

Jean-Sébastien Coron The RSA cryptosystem

Solving x2 + ax + b = 0 (mod N)

Illustration with a polynomial of degree 2 :

Let f (x) = x2 + ax + b (mod N).
We must find x0 such that f (x0) = 0 (mod N) and |x0| ≤ X .

We are interested in finding a small linear integer combination
of the polynomials f (x), Nx and N:

h(x) = α · f (x) + β · Nx + γ · N
Then h(x0) = 0 (mod N).

If the coefficients of h(x) are small enough :

Since x0 is small, h(x0) will be small. If |h(x0)| < N, then
h(x0) = 0 (mod N)⇒ h(x0) = 0 over Z.
We can recover x0 using any
root-finding algorithm.

Jean-Sébastien Coron The RSA cryptosystem

Solving x2 + ax + b = 0 (mod N)

From h(x) = α · f (x) + β · Nx + γ · N
with f (x) = x2 + ax + b
we get h(x) = αx2 + (α · a + β · N)x + α · b + γ · N

We want |h(x0)| < N

True if |αx2
0 | < N/3 and |α · a + β · N| · |x0| < N/3 and

|α · b + γ · N| < N/3
With |x0| < X , true if |αX 2| < N/3 and
|α · a + β · N| · X < N/3 and |α · b + γ · N| < N/3

True if ‖α[X 2, aX , b] + β[0,NX , 0] + γ[0, 0,N]‖ < N/3

How do we find such integers α, β, γ ?
With the LLL lattice reduction
algorithm.

Jean-Sébastien Coron The RSA cryptosystem

Using LLL lattice reduction

We want ‖α[X 2, aX , b] + β[0,NX , 0] + γ[0, 0,N]‖ < N/3

Let L be the corresponding lattice, with a basis of row
vectors :

L =

 X 2 aX b
NX

N

Using LLL, one can find a lattice vector ~b of norm :

‖~b‖ ≤ 2(det L)1/3 = 2N2/3X

~b = α[X 2, aX , b] + β[0,NX , 0] + γ[0, 0,N]

We want ‖~b‖ < N/3

True if 2N2/3X < N/3
True if X < N1/3/6
We recover x0 by finding the roots
over Z of h(x) = αf (x) + βNx + γ

Jean-Sébastien Coron The RSA cryptosystem

Sage code

1 "Finds a small root of polynomial x^2+ax+b=0 mod N"

2 def CopPolyDeg2(a,b,Nn):

3 n=Nn.nbits()

4 X=2^(n//3-3)

5 M=matrix(ZZ ,[[X^2,a*X,b],\

6 [0 ,Nn*X,0],\

7 [0 ,0 ,Nn]])

8 V=M.LLL()

9 v=V[0]

10 R.<x> = ZZ[]

11 h=sum(v[i]*x^(2-i)/X^(2-i) for i in range (3))

12 return h.roots ()

Jean-Sébastien Coron The RSA cryptosystem

Lattices and lattice reduction

Definition :

Let ~u1, . . . , ~uω ∈ Zn be linearly independent vectors with
ω ≤ n. The lattice L spanned by the ~ui ’s is

L =
{ ω∑

i=1

αi · ~ui | αi ∈ Z
}

If L is full rank (ω = n), then det L = | detM|, where M is the
matrix whose rows are the basis vectors ~u1, . . . , ~uω.

The LLL algorithm :

The LLL algorithm, given (~u1, . . . , ~uω), finds in polynomial

time a vector ~b1 such that:

‖~b1‖ ≤ 2(ω−1)/4 det(L)1/ω

Jean-Sébastien Coron The RSA cryptosystem

Improving the bound on |x0|

The previous bound gives |x0| ≤ N1/3/6 for a polynomial of
degree 2

But Coppersmith’s bound gives |x0| ≤ N1/2.

Technique : work modulo N` instead of N.

Example with ` = 2:
Let g(x) = f (x)2. Then g(x0) = 0 (mod N2).
g(x) = x4 + a′x3 + b′x2 + c ′x + d ′.
Find a small linear combination h(x) of the polynomials g(x),
Nxf (x), Nf (x), N2x and N2.
Then h(x0) = 0 (mod N2).
If the coefficients of h(x) are
small enough, then h(x0) = 0.

Jean-Sébastien Coron The RSA cryptosystem

Details when working modulo N2

Lattice basis with the coefficients of the polynomials g(xX),
NxXf (xX), Nf (xX), N2xX and N2.

X 4 a′X 3 b′X 2 c ′X d ′

NX 3 NaX 2 NbX
NX 2 NaX Nb

N2X
N2

g(x)
Nxf (x)
Nf (x)
N2x
N2

Using LLL, one gets a polynomial h(xX) with:

‖h(xX)‖ ≤ 2 · (det L)1/5 ≤ 2X 2N6/5

If X < N2/5/4, then ‖h(xX)‖ < N2/5
and we must have h(x0) = 0.
Improved bound N2/5 instead of N1/3.

Jean-Sébastien Coron The RSA cryptosystem

Coppersmith’s algorithm for finding the small roots of
f (x) = 0 (mod N)

Find a small linear integer combination h(x) of the
polynomials :

qik(x) = x i · N`−k f k(x) (mod N`)
For some ` and 0 ≤ i < δ and 0 ≤ k ≤ `.
f (x0) = 0 (mod N) ⇒ f k(x0) = 0 (mod Nk) ⇒ qik(x0) = 0
(mod N`).
Then h(x0) = 0 (mod N`).

If the coefficients of h(x) are small enough :

Then h(x0) = 0 holds over Z.
x0 can be found using any standard
root-finding algorithm.

For large enough `, recovers all roots
|x0| < N1/δ of f (x) = 0 (mod N)
where δ = degf .

Jean-Sébastien Coron The RSA cryptosystem

Another low public exponent attack

Coppersmith’s short pad attack

Let c1 = (m‖r1)3 (mod N) and c2 = (m‖r2)3 (mod N)
One can recover m if r1, r2 < N1/9

Let g1(x , y) = x3 − c1 and g2(x , y) = (x + y)3 − c2.
g1 and g2 have a common root (m‖r1, r2 − r1) modulo N.
h(y) = Resx(g1, g2) has a root ∆ = r2 − r1, with deg h = 9.
To recover m‖r1, take gcd of g1(x ,∆) and g2(x ,∆).

Conclusion:

Attack only works for specific encryption schemes.
Low public exponent is secure when provably secure
construction is used,
for example OAEP.

Jean-Sébastien Coron The RSA cryptosystem

Factoring with high bits known

Let N = p · q. Assume that we know half of the most
significant bits of p.

Write p = P + x0 for some known P and unknown x0 with
x0 < p1/2.

Consider the system:{
N ≡ 0 (mod P + x0)

x + P ≡ 0 (mod P + x0)

x0 is a small root of both polynomial equations.
Apply Coppersmith’s technique with unknown modulus P + x0.
We can recover x0 if x0 < p1/2

Polynomial time factorization of N = pq
if half of the high order (or low order)
bits of p are known.

Jean-Sébastien Coron The RSA cryptosystem

Example of factoring with high bits known

Let N = pq with p = P + x0 for known P and |x0| < X

Consider the lattice of row vectors:

L =

X 2 PX
X P

N

 x2 + Px
x + P
N

A short vector ~b ∈ L gives a polynomial h(x) such that

h(x) = α(x + P)x + β(x + P) + γN
h(x0) ≡ 0 (mod P + x0) because N ≡ 0 (mod P + x0)
If |h(x0)| < P + x0, then h(x0) = 0
and we can recover x0

Jean-Sébastien Coron The RSA cryptosystem

Analysis

L =

X 2 PX
X P

N

With LLL, we obtain ‖~b‖ ≤ 2 det1/3 L = 2XN1/3

h(x) = α(x + P)x + β(x + P) + γN

We have |h(x0)| ≤ 3‖~b‖ ≤ 6XN1/3

We want |h(x0)| < P + x0 = p.
We know N1/2/2 < p when 2k/2−1 < p, q < 2k/2

True if 6XN1/3 < N1/2/2. This gives X < N1/6/12

We can recover the factorization of
N = pq if we know 2/3 of the
high-order bits of p

We can reach 1/2 with higher
dimensional matrices

Jean-Sébastien Coron The RSA cryptosystem

Factoring N = prq in Polynomial Time

Extension to N = prq from [BDHG99]

Polynomial-time factorization of N = prq when 1/(r + 1) of
the bits of p are known.

Polynomial-time factorization of N = prq for large r

When r ' log p, only a constant number of bits of p need to
be known.
Exhaustive search of these bits is then polynomial-time

In practice, unpractical compared to the (subexponential)
Elliptic Curve factoring Method (ECM).

Jean-Sébastien Coron The RSA cryptosystem

Applications of Coppersmith’s technique

Coppersmith’s technique for finding small roots of polynomial
equations [Cop97]

Based on the LLL lattice reduction algorithm

Numerous applications in cryptanalysis :

Partially known message attack with c = (B‖m)3 (mod N)
Coppersmith’s short pad attack with ci = (m‖ri)3 (mod N)
Factoring N = pq with high bits known [Cop97]
Factoring N = prq for large r [BDHG99]
Breaking RSA for d < N0.29 [BD99]

Other applications

Cryptanalysis of RSA with small CRT exponents [JM07]
Deterministic equivalence between
recovering d and factoring N [May04]
Improved security proof for RSA-OAEP
with low public exponent (Shoup, C01).

Jean-Sébastien Coron The RSA cryptosystem

Appendix

Jean-Sébastien Coron The RSA cryptosystem

Howgrave-Graham lemma

Given h(x) =
∑

hix
i , let ‖h‖2 =

∑
h2
i .

Howgrave-Graham lemma :

Let h ∈ Z[x] be a sum of at most ω monomials. If h(x0) = 0
(mod N) with |x0| ≤ X and ‖h(xX)‖ < N/

√
ω, then h(x0) = 0

holds over Z.
Proof :

|h(x0)| =
∣∣∣∑ hix

i
0

∣∣∣ =

∣∣∣∣∑ hiX
i
(x0

X

)i ∣∣∣∣
≤

∑∣∣∣∣hiX i
(x0

X

)i ∣∣∣∣ ≤∑∣∣hiX i
∣∣

≤
√
ω‖h(xX)‖ < N

Since h(x0) = 0 mod N,
this gives h(x0) = 0.

Jean-Sébastien Coron The RSA cryptosystem

