The RSA cryptosystem
 Part 2: attacks against RSA

Jean-Sébastien Coron
University of Luxembourg

- RSA key generation:
- Generate two large distinct primes p and q of same bit-size $k / 2$, where k is a parameter.
- Compute $N=p \cdot q$ and $\phi=(p-1)(q-1)$.
- Select a random integer $e, 1<e<\phi$ such that $\operatorname{gcd}(e, \phi)=1$
- Compute the unique integer d such that

$$
e \cdot d \equiv 1 \quad(\bmod \phi)
$$

using the extended Euclidean algorithm.

- The public key is (N, e).
- The private key is d.
- Encryption
- Given a message $m \in[0, N-1]$ and the recipent's public-key (n, e), compute the ciphertext:

$$
c=m^{e} \bmod N
$$

- Decryption
- Given a ciphertext c, to recover m, compute:

$$
m=c^{d} \bmod N
$$

- Textbook RSA encryption is insecure
- One must first apply a probabilistic encoding to m
- Encryption: $c=\mu(m, r)^{e} \bmod N$
- Decryption: compute $c^{d} \bmod N$, check that the encoding is correct, and recover m
- Example: OAEP

Attacks against RSA

- Mathematical attacks against RSA
- Factoring. Elementary attacks against textbook RSA encryption and signature. Previous lecture.
- Low private / public exponent attacks. Coppersmith's technique. This lecture.
- Attacks against RSA signatures. Next lecture.
- Implementation attacks
- Timing attacks, power attacks and fault attacks
- Countermeasures

Low private exponent attacks

- To reduce decryption time, one could use a small d
- $m=c^{d} \bmod N$
- Decryption time is proportional to the bitsize of d
- First generate a small d, and compute the (full-size) e such that $e \cdot d=1(\bmod \phi(N))$
- Wiener's attack
- recover d if $d<N^{0.25}$
- based on rational reconstruction
- Rational reconstruction
- Given u, e such that $a \cdot u \equiv b(\bmod e)$ with $2|a| \cdot|b|<e$, recover the integers a and b.
- Can be solved by modifying the extended Euclidean algorithm
- The extended Euclidean algorithm computes a sequence a_{i}, b_{i} such that $a_{i} \cdot u \equiv b_{i}(\bmod e)$, where a_{i} is increasing, and b_{i} is decreasing.
- Stop when $\left|a_{i}\right| \leq A$ and $\left|b_{i}\right| \leq B$ for upper-bounds A, B with $2 A \cdot B<e$
- We have $d \cdot e=1+a \cdot \phi(N)$ for some $a \in \mathbb{Z}$
- With $\phi(N)=(p-1)(q-1)=N-x$, this gives:

$$
a \cdot(N-x) \equiv-1 \quad(\bmod e)
$$

- This gives $a \cdot N \equiv u(\bmod e)$ with $u=a x-1$
- If $d \simeq N^{1 / 4}$, then $a \simeq N^{1 / 4}$ and $u \simeq N^{3 / 4}$.
- Since $|a| \cdot|u| \simeq N \simeq e$, we can recover a and u by rational reconstruction.
- From a and u, we recover x. From x we recover $\phi(N)$. From e and $\phi(N)$ we recover the private exponent d.

Extension of Wiener's attack

- Wiener's attack
- recover d if $d<N^{0.25}$
- Boneh and Durfee's attack (1999)
- Recover d if $d<N^{0.29}$
- Based on lattice reduction and Coppersmith's technique
- Open problem: extend to $d<N^{0.5}$
- Conclusion: devastating attack
- Use a full-size d

Low public exponent attack

- To reduce encryption time, one can use a small e
- $c=m^{e} \bmod N$
- For example $e=3$ or $e=2^{16}+1$
- Coppersmith's theorem :
- Let N be an integer and f be a polynomial of degree δ. Given N and f, one can recover in polynomial time all x_{0} such that $f\left(x_{0}\right)=0(\bmod N)$ and $\left|x_{0}\right|<N^{1 / \delta}$.
- Application: partially known message attack:
- If $c=(B \| m)^{3} \bmod N$, one can recover m if $\mathrm{sz}(m)<\mathrm{sz}(N) / 3$
- Define $f(x)=\left(B \cdot 2^{k}+x\right)^{3}-c(\bmod N)$.
- Then $f(m)=0(\bmod N)$ and apply

Coppersmith's theorem to recover m.

Coppersmith's theorem for solving modular polynomial equations

- Solving $f(x)=0(\bmod N)$ when N is of unknown factorization: hard problem.
- For $f(x)=x^{2}-a$, equivalent to factoring N.
- For $f(x)=x^{e}-a$, equivalent to inverting RSA.
- Coppersmith showed (E96) that finding small roots is easy.
- When $\operatorname{deg} f=\delta$, finds in polynomial time all integer x_{0} such that $f\left(x_{0}\right)=0(\bmod N)$ and $\left|x_{0}\right| \leq N^{1 / \delta}$.
- Based on the LLL lattice reduction algorithm.

Coppersmith's bound

- Coppersmith's theorem
- When $\operatorname{deg} f=\delta$, finds in polynomial time all integer x_{0} such that $f\left(x_{0}\right) \equiv 0(\bmod N)$ and $\left|x_{0}\right| \leq N^{1 / \delta}$.
- Consider the particular case $f(x)=x^{\delta}-a$
- We want to solve $f\left(x_{0}\right)=0(\bmod N)$ with $\left|x_{0}\right|^{\delta}<N$
- This gives $\left(x_{0}\right)^{\delta} \equiv a(\bmod N)$ with $\left|x_{0}\right|^{\delta}<N$
- This implies $\left(x_{0}\right)^{\delta}=a$ over \mathbb{Z}
- $x_{0}=a^{1 / \delta}$ over \mathbb{Z}
- Coppersmith's theorem is a generalization to any polynomial $f(x)$ modulo N of degree δ, with the same bound.

Applications in cryptanalysis

- Coppersmith's technique for finding small roots of polynomial equations [Cop97]
- Based on the LLL lattice reduction algorithm
- Numerous applications in cryptanalysis:
- Partially known message attack with $c=(B \| m)^{3}(\bmod N)$
- Coppersmith's short pad attack with $c_{1}=\left(m \| r_{1}\right)^{3}(\bmod N)$ and $c_{2}=\left(m \| r_{2}\right)^{3}(\bmod N)$
- Factoring $N=p q$ when half of the bits of p are known
- Factoring $N=p^{r} q$ for large r (Boneh et al., C99).
- Illustration with a polynomial of degree 2 :
- Let $f(x)=x^{2}+a x+b(\bmod N)$.
- We must find x_{0} such that $f\left(x_{0}\right)=0(\bmod N)$ and $\left|x_{0}\right| \leq X$.
- We are interested in finding a small linear integer combination of the polynomials $f(x), N x$ and N :
- $h(x)=\alpha \cdot f(x)+\beta \cdot N x+\gamma \cdot N$
- Then $h\left(x_{0}\right)=0(\bmod N)$.
- If the coefficients of $h(x)$ are small enough:
- Since x_{0} is small, $h\left(x_{0}\right)$ will be small. If $\left|h\left(x_{0}\right)\right|<N$, then $h\left(x_{0}\right)=0(\bmod N) \Rightarrow h\left(x_{0}\right)=0$ over \mathbb{Z}.
- We can recover x_{0} using any root-finding algorithm.
- From $h(x)=\alpha \cdot f(x)+\beta \cdot N x+\gamma \cdot N$
- with $f(x)=x^{2}+a x+b$
- we get $h(x)=\alpha x^{2}+(\alpha \cdot a+\beta \cdot N) x+\alpha \cdot b+\gamma \cdot N$
- We want $\left|h\left(x_{0}\right)\right|<N$
- True if $\left|\alpha x_{0}^{2}\right|<N / 3$ and $|\alpha \cdot a+\beta \cdot N| \cdot\left|x_{0}\right|<N / 3$ and $|\alpha \cdot b+\gamma \cdot N|<N / 3$
- With $\left|x_{0}\right|<X$, true if $\left|\alpha X^{2}\right|<N / 3$ and

$$
|\alpha \cdot a+\beta \cdot N| \cdot X<N / 3 \text { and }|\alpha \cdot b+\gamma \cdot N|<N / 3
$$

- True if $\left\|\alpha\left[X^{2}, a X, b\right]+\beta[0, N X, 0]+\gamma[0,0, N]\right\|<N / 3$
- How do we find such integers α, β, γ ?
- With the LLL lattice reduction algorithm.

Using LLL lattice reduction

- We want $\left\|\alpha\left[X^{2}, a X, b\right]+\beta[0, N X, 0]+\gamma[0,0, N]\right\|<N / 3$
- Let L be the corresponding lattice, with a basis of row vectors :

$$
L=\left[\begin{array}{lll}
X^{2} & a X & b \\
& N X & \\
& & N
\end{array}\right]
$$

- Using LLL, one can find a lattice vector \vec{b} of norm :

$$
\|\vec{b}\| \leq 2(\operatorname{det} L)^{1 / 3}=2 N^{2 / 3} X
$$

- $\vec{b}=\alpha\left[X^{2}, a X, b\right]+\beta[0, N X, 0]+\gamma[0,0, N]$
- We want $\|\vec{b}\|<N / 3$
- True if $2 N^{2 / 3} X<N / 3$
- True if $X<N^{1 / 3} / 6$
- We recover x_{0} by finding the roots over \mathbb{Z} of $h(x)=\alpha f(x)+\beta N x+\gamma$

Sage code

```
"Finds a small root of polynomial \(x\) ^2+ \(\mathrm{ax}+\mathrm{b}=0 \bmod \mathrm{~N} "\)
def CopPolyDeg2(a,b,Nn):
    n=Nn.nbits()
    \(\mathrm{X}=2^{\text {^ ( }}\) ( \(\mathrm{n} / / 3-3\) )
    M=matrix (ZZ, [[X~2, a*X,b], \}
    [0 \(, \mathrm{Nn} * \mathrm{X}, 0], \backslash\)
    [0 , 0 ,Nn]])
    \(\mathrm{V}=\mathrm{M} . \operatorname{LLL}()\)
    \(\mathrm{v}=\mathrm{V}\) [0]
    R. \(\langle x\rangle=Z Z[]\)
    \(\mathrm{h}=\mathrm{sum}\left(\mathrm{v}[\mathrm{i}] * \mathrm{x}^{\wedge}(2-\mathrm{i}) / \mathrm{X}^{\wedge}(2-\mathrm{i})\right.\) for i in range (3))
    return h.roots()
```


Lattices and lattice reduction

- Definition:
- Let $\vec{u}_{1}, \ldots, \vec{u}_{\omega} \in \mathbb{Z}^{n}$ be linearly independent vectors with $\omega \leq n$. The lattice L spanned by the \vec{u}_{i} 's is

$$
L=\left\{\sum_{i=1}^{\omega} \alpha_{i} \cdot \vec{u}_{i} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- If L is full $\operatorname{rank}(\omega=n)$, then $\operatorname{det} L=|\operatorname{det} M|$, where M is the matrix whose rows are the basis vectors $\vec{u}_{1}, \ldots, \vec{u}_{\omega}$.
- The LLL algorithm :
- The LLL algorithm, given $\left(\vec{u}_{1}, \ldots, \vec{u}_{\omega}\right)$, finds in polynomial time a vector \vec{b}_{1} such that:

$$
\left\|\vec{b}_{1}\right\| \leq 2^{(\omega-1) / 4} \operatorname{det}(L)^{1 / \omega}
$$

Improving the bound on $\left|x_{0}\right|$

- The previous bound gives $\left|x_{0}\right| \leq N^{1 / 3} / 6$ for a polynomial of degree 2
- But Coppersmith's bound gives $\left|x_{0}\right| \leq N^{1 / 2}$.
- Technique : work modulo N^{ℓ} instead of N.
- Example with $\ell=2$:
- Let $g(x)=f(x)^{2}$. Then $g\left(x_{0}\right)=0\left(\bmod N^{2}\right)$.
- $g(x)=x^{4}+a^{\prime} x^{3}+b^{\prime} x^{2}+c^{\prime} x+d^{\prime}$.
- Find a small linear combination $h(x)$ of the polynomials $g(x)$, $N x f(x), N f(x), N^{2} x$ and N^{2}.
- Then $h\left(x_{0}\right)=0\left(\bmod N^{2}\right)$.
- If the coefficients of $h(x)$ are small enough, then $h\left(x_{0}\right)=0$.

Details when working modulo N^{2}

- Lattice basis with the coefficients of the polynomials $g(x X)$, $N_{x} X f(x X), N f(x X), N^{2} x X$ and N^{2}.

$$
\left[\begin{array}{ccccc}
X^{4} & a^{\prime} X^{3} & b^{\prime} X^{2} & c^{\prime} X & d^{\prime} \\
& N X^{3} & N a X^{2} & N b X & \\
& & N X^{2} & N a X & N b \\
& & N^{2} X & \\
& & & & N^{2}
\end{array}\right] \quad \begin{aligned}
& g(x) \\
& N x f(x) \\
& N f(x) \\
& \\
&
\end{aligned}
$$

- Using LLL, one gets a polynomial $h(x X)$ with:
- $\|h(x X)\| \leq 2 \cdot(\operatorname{det} L)^{1 / 5} \leq 2 X^{2} N^{6 / 5}$
- If $X<N^{2 / 5} / 4$, then $\|h(x X)\|<N^{2} / 5$ and we must have $h\left(x_{0}\right)=0$.
- Improved bound $N^{2 / 5}$ instead of $N^{1 / 3}$.

Coppersmith's algorithm for finding the small roots of $f(x)=0(\bmod N)$

- Find a small linear integer combination $h(x)$ of the polynomials :
- $q_{i k}(x)=x^{i} \cdot N^{\ell-k} f^{k}(x)\left(\bmod N^{\ell}\right)$
- For some ℓ and $0 \leq i<\delta$ and $0 \leq k \leq \ell$.
- $f\left(x_{0}\right)=0(\bmod N) \Rightarrow f^{k}\left(x_{0}\right)=0\left(\bmod N^{k}\right) \Rightarrow q_{i k}\left(x_{0}\right)=0$ $\left(\bmod N^{\ell}\right)$.
- Then $h\left(x_{0}\right)=0\left(\bmod N^{\ell}\right)$.
- If the coefficients of $h(x)$ are small enough :
- Then $h\left(x_{0}\right)=0$ holds over \mathbb{Z}.
- x_{0} can be found using any standard root-finding algorithm.
- For large enough ℓ, recovers all roots
$\left|x_{0}\right|<N^{1 / \delta}$ of $f(x)=0(\bmod N)$
where $\delta=\operatorname{deg} f$.

Another low public exponent attack

- Coppersmith's short pad attack
- Let $c_{1}=\left(m \| r_{1}\right)^{3}(\bmod N)$ and $c_{2}=\left(m \| r_{2}\right)^{3}(\bmod N)$
- One can recover m if $r_{1}, r_{2}<N^{1 / 9}$
- Let $g_{1}(x, y)=x^{3}-c_{1}$ and $g_{2}(x, y)=(x+y)^{3}-c_{2}$.
- g_{1} and g_{2} have a common root $\left(m \| r_{1}, r_{2}-r_{1}\right)$ modulo N.
- $h(y)=\operatorname{Res}_{x}\left(g_{1}, g_{2}\right)$ has a root $\Delta=r_{2}-r_{1}$, with $\operatorname{deg} h=9$.
- To recover $m \| r_{1}$, take gcd of $g_{1}(x, \Delta)$ and $g_{2}(x, \Delta)$.
- Conclusion:
- Attack only works for specific encryption schemes.
- Low public exponent is secure when provably secure construction is used, for example OAEP.

Factoring with high bits known

- Let $N=p \cdot q$. Assume that we know half of the most significant bits of p.
- Write $p=P+x_{0}$ for some known P and unknown x_{0} with $x_{0}<p^{1 / 2}$.
- Consider the system:

$$
\left\{\begin{array}{r}
N \equiv 0 \quad\left(\bmod P+x_{0}\right) \\
x+P \equiv 0 \quad\left(\bmod P+x_{0}\right)
\end{array}\right.
$$

- x_{0} is a small root of both polynomial equations.
- Apply Coppersmith's technique with unknown modulus $P+x_{0}$.
- We can recover x_{0} if $x_{0}<p^{1 / 2}$
- Polynomial time factorization of $N=p q$ if half of the high order (or low order) bits of p are known.

Example of factoring with high bits known

- Let $N=p q$ with $p=P+x_{0}$ for known P and $\left|x_{0}\right|<X$
- Consider the lattice of row vectors:

$$
L=\left[\begin{array}{ccc}
X^{2} & P X & \\
& X & P \\
& & N
\end{array}\right] \quad \begin{aligned}
& x^{2}+P x \\
& x+P \\
& N
\end{aligned}
$$

- A short vector $\vec{b} \in L$ gives a polynomial $h(x)$ such that
- $h(x)=\alpha(x+P) x+\beta(x+P)+\gamma N$
- $h\left(x_{0}\right) \equiv 0\left(\bmod P+x_{0}\right)$ because $N \equiv 0\left(\bmod P+x_{0}\right)$
- If $\left|h\left(x_{0}\right)\right|<P+x_{0}$, then $h\left(x_{0}\right)=0$
and we can recover x_{0}

Analysis

$$
L=\left[\begin{array}{ccc}
X^{2} & P X & \\
& X & P \\
& & N
\end{array}\right]
$$

- With LLL, we obtain $\|\vec{b}\| \leq 2 \operatorname{det}^{1 / 3} L=2 X N^{1 / 3}$
- $h(x)=\alpha(x+P) x+\beta(x+P)+\gamma N$
- We have $\left|h\left(x_{0}\right)\right| \leq 3\|\vec{b}\| \leq 6 X N^{1 / 3}$
- We want $\left|h\left(x_{0}\right)\right|<P+x_{0}=p$.
- We know $N^{1 / 2} / 2<p$ when $2^{k / 2-1}<p, q<2^{k / 2}$
- True if $6 X N^{1 / 3}<N^{1 / 2} / 2$. This gives $X<N^{1 / 6} / 12$
- We can recover the factorization of
$N=p q$ if we know $2 / 3$ of the high-order bits of p
- We can reach $1 / 2$ with higher dimensional matrices

Factoring $N=p^{r} q$ in Polynomial Time

- Extension to $N=p^{r} q$ from [BDHG99]
- Polynomial-time factorization of $N=p^{r} q$ when $1 /(r+1)$ of the bits of p are known.
- Polynomial-time factorization of $N=p^{r} q$ for large r
- When $r \simeq \log p$, only a constant number of bits of p need to be known.
- Exhaustive search of these bits is then polynomial-time
- In practice, unpractical compared to the (subexponential)

Elliptic Curve factoring Method (ECM).

Applications of Coppersmith's technique

- Coppersmith's technique for finding small roots of polynomial equations [Cop97]
- Based on the LLL lattice reduction algorithm
- Numerous applications in cryptanalysis:
- Partially known message attack with $c=(B \| m)^{3}(\bmod N)$
- Coppersmith's short pad attack with $c_{i}=\left(m \| r_{i}\right)^{3}(\bmod N)$
- Factoring $N=p q$ with high bits known [Cop97]
- Factoring $N=p^{r} q$ for large r [BDHG99]
- Breaking RSA for $d<N^{0.29}$ [BD99]
- Other applications
- Cryptanalysis of RSA with small CRT exponents [JM07]
- Deterministic equivalence between recovering d and factoring N [May04]
- Improved security proof for RSA-OAEP with low public exponent (Shoup, C01).

Appendix

Howgrave-Graham lemma

- Given $h(x)=\sum h_{i} x^{i}$, let $\|h\|^{2}=\sum h_{i}^{2}$.
- Howgrave-Graham lemma :
- Let $h \in \mathbb{Z}[x]$ be a sum of at most ω monomials. If $h\left(x_{0}\right)=0$ $(\bmod N)$ with $\left|x_{0}\right| \leq X$ and $\|h(x X)\|<N / \sqrt{\omega}$, then $h\left(x_{0}\right)=0$ holds over \mathbb{Z}.
- Proof:

$$
\begin{aligned}
\left|h\left(x_{0}\right)\right| & =\left|\sum h_{i} x_{0}^{i}\right|=\left|\sum h_{i} X^{i}\left(\frac{x_{0}}{X}\right)^{i}\right| \\
& \leq \sum\left|h_{i} X^{i}\left(\frac{x_{0}}{X}\right)^{i}\right| \leq \sum\left|h_{i} X^{i}\right| \\
& \leq \sqrt{\omega}\|h(x X)\|<N
\end{aligned}
$$

Since $h\left(x_{0}\right)=0 \bmod N$, this gives $h\left(x_{0}\right)=0$.

