
The RSA cryptosystem
Part 3: RSA signatures: attacks and security proofs

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron The RSA cryptosystem

Textbook RSA signature scheme

Key generation

Public modulus: N = p · q where p and q are large primes.
Public exponent: e
Private exponent: d , such that d · e = 1 (mod φ(N))

To sign a message m, the signer computes :

s = md (mod N)
Only the signer can sign the message.

To verify the signature, one checks that:

m = se (mod N)
Anybody can verify the signature

Jean-Sébastien Coron The RSA cryptosystem

Attacks against textbook RSA signature

Existential forgery

r e = m (mod N)
r is a valid signature of m, so we can construct a valid
message/signature pair without knowing the private key.

Chosen message attack

(m1 ·m2)d = md
1 ·md

2 (mod N)
Given two signatures, we can construct a 3rd signature without
knowing the private key.

Countermeasure

First encapsulate m using an encoding function µ(m)

σ = µ(m)d (mod N)

Jean-Sébastien Coron The RSA cryptosystem

Encoding functions

Two kinds of encoding functions µ(m)
Ad-hoc encodings

PKCS#1 v1.5, ISO 9796-1, ISO 9796-2.
Designed to prevent specific attacks, but can exhibit some
weaknesses

Provably secure encodings

RSA-FDH, RSA-PSS
Proven to be secure under well-defined assumptions.

Jean-Sébastien Coron The RSA cryptosystem

Ad-hoc encoding functions

Examples of ad-hoc encoding functions, with signature
σ = µ(m)d (mod N)

ISO 9796-1:

µ(m) = s̄(mz)s(mz−1)mzmz−1 . . . s(m1)s(m0)m06

ISO 9796-2:
µ(m) = 6A‖m[1]‖H(m)‖BC

PKCS#1 v1.5:

µ(m) = 0001 FF....FF00||cSHA||SHA(m)

Jean-Sébastien Coron The RSA cryptosystem

The Desmedt-Odlyzko attack [DO85]

Suppose the encoded messages µ(m) are relatively short.

1 Let p1, . . . , p` be the primes smaller than some bound B.

2 Find `+ 1 messages mi such that the µ(mi) are B-smooth:

µ(mi) = p
vi,1
1 · · · pvi,``

3 Obtain a linear dependence relation between the exponent
vectors ~Vi = (vi ,1 mod e, . . . , vi ,` mod e) and deduce

µ(mτ) =
∏
i
µ(mi)

4 Ask for the signatures of the mi ’s and
forge the signature of mτ .

µ(mτ)d =
∏
i
µ(mi)

d (mod N)

Jean-Sébastien Coron The RSA cryptosystem

The Desmedt-Odlyzko attack (1)

Assume that µ(mi) is B-smooth for all 1 ≤ i ≤ τ :

µ(mi) =
∏̀
j=1

p
vi,j
j

To each µ(mi) associate the vector exponents modulo e:

~Vi = (vi ,1 mod e, . . . , vi ,` mod e) ∈ Z`

Assuming that e is prime, the set of all `-dimensional vectors
modulo e forms a linear space of dimension `

If τ ≥ `+ 1, one can express one vector, say ~Vτ , as a linear
combination of the others modulo e,
using Gaussian elimination:

~Vτ = ~Γ · e +
τ−1∑
i=1

βi ~Vi

Jean-Sébastien Coron The RSA cryptosystem

The Desmedt-Odlyzko attack (2)

We write the linear relation on the exponents:

vτ,j = γj · e +
τ−1∑
i=1

βi · vi ,j

Multiplicative relation on the µ(mi):

µ(mτ) =
∏̀
j=1

p
vτ,j
j =

∏̀
j=1

p
γj ·e+

τ−1∑
i=1

βi ·vi,j

j =

∏̀
j=1

p
γj
j

e

·
∏̀
j=1

τ−1∏
i=1

p
vi,j ·βi
j

=

∏̀
j=1

p
γj
j

e

·
τ−1∏
i=1

∏̀
j=1

p
vi,j
j

βi

=

∏̀
j=1

p
γj
j

e

·
τ−1∏
i=1

µ(mi)
βi

Jean-Sébastien Coron The RSA cryptosystem

The Desmedt-Odlyzko attack (3)

Multiplicative relation on the µ(mi)

µ(mτ) = δe ·
τ−1∏
i=1

µ(mi)
βi , where δ :=

∏̀
j=1

p
γj
j

Signature forgery

The attacker asks the signatures σi of m1, . . . ,mτ−1 and
forges the signature στ of mτ :

στ = µ(mτ)
d = δ ·

τ−1∏
i=1

(
µ(mi)

d
)βi (mod N)

στ = δ ·
τ−1∏
i=1

σβii (mod N)

Jean-Sébastien Coron The RSA cryptosystem

Smoothness probability

Theorem (CEP83)

Let x be an integer and let Lx [β] = exp
(
β ·
√

log x log log x
)
. Let t

be an integer randomly distributed between zero and x . Then for
large x , the probability that all the prime factors of t are less than
Lx [β] is given by Lx [−1/(2β) + o(1)].

Smoothness probability

Let x be a bound on µ(m) and let ` = Lx [β] be the number of
primes, for some parameter β.
The smoothness probability is
Lx [−1/(2β) + o(1)]

Jean-Sébastien Coron The RSA cryptosystem

Asymptotic complexity of Desmedt-Odlyzko attack

Asymptotic complexity analysis

The smoothness probability is Lx [−1/(2β) + o(1)].
⇒ it takes Lx [1/(2β) + o(1)] time to find a smooth µ(mi)
We need `+ 1 smooth µ(mi), therefore:

T = Lx [1/(2β) + ◦(1)] · Lx [β] = Lx [1/(2β) + β + ◦(1)]

The complexity is minimal for β =
√

2/2.
Asymptotic complexity: Lx

[√
2 + ◦(1)

]
The complexity is sub-exponential in the size of µ(m)

The attack is only practical for relatively
small µ(m) (less than 160 bits).

Jean-Sébastien Coron The RSA cryptosystem

Application of Desmedt-Odlyzko attack

Cryptanalysis of ISO 9796-1 and ISO 9796-2 signatures
[CNS99]

Extension of Desmedt-Odlyko attack
Following this attack ISO 9796-1 was withdrawn
ISO 9796-2 was amended by increasing the message digest to
at least 160 bits.

Cryptanalysis of ISO 9796-2 [CNTW09]

Improved detection of smooth numbers using Bernstein’s
algorithm.
Works against the amended ISO 9796-2.
Following this attack ISO 9796-2 was
amended again in late 2010.

Jean-Sébastien Coron The RSA cryptosystem

Security proofs in cryptography

Since the invention of public-key cryptography

Many schemes have been proposed...
And many of them have been broken.

How can we justify security rigorously ?
Prove that if an adversary can break the scheme, he can solve
a hard problem such as:

Factoring large integers.
RSA problem: given y , compute yd mod N.

This shows that the scheme is secure, assuming that the
underlying problem is hard to solve.

To be rigorous, one must first specify
what it means to break a scheme.

Security definition

Jean-Sébastien Coron The RSA cryptosystem

Provable security for signatures

Strongest security notion for signatures (Goldwasser, Micali
and Rivest, 1988):

It must be infeasible for an adversary to forge the signature of
a message, even if he can obtain the signature of messages of
his choice.

Security proof:

Show that from an adversary who is able to forge signature,
you can solve a difficult problem, such as inverting RSA.

Examples of provably secure signature schemes for RSA:

Full Domain Hash (FDH)
Probabilistic Signature Scheme (PSS)

Jean-Sébastien Coron The RSA cryptosystem

Security model

Forger Reduction

(N, e, y)

yd mod N

pk = (N, e)

mi

σi

m′, σ′

Jean-Sébastien Coron The RSA cryptosystem

The FDH scheme

The FDH signature scheme:

was designed in 1993 by Bellare and Rogaway.

m −→ H(m) −→ s = H(m)d mod N

The hash function H(m) has the same output size as the
modulus.

Security of FDH

FDH is provably secure in the random oracle model, assuming
that inverting RSA is hard.
In the random oracle model, the hash function is replaced by
an oracle which outputs a random value
for each new query.

Jean-Sébastien Coron The RSA cryptosystem

Security proof for FDH

Proof in the random oracle model

The adversary cannot compute the hash-function by himself.
He must make a request to the random oracle, which answers a
random, independantly distributed answer for each new query.

Randomly distributed in ZN .

Idealized model of computation

A proof in the random oracle model does not imply that the
scheme is secure when a concrete hash-function like SHA-1 is
used.
Still a good guarantee.

Jean-Sébastien Coron The RSA cryptosystem

Security model with hash queries

Forger Reduction

(N, e, y)

yd mod N

pk = (N, e)

mi

H(mi)

mi

σi

m′, σ′

Jean-Sébastien Coron The RSA cryptosystem

Proof of security

We assume that there exists a successful adversary.

This adversary is a forger algorithm that given the public-key
(N, e), after at most qhash hash queries and qsig signature
queries, outputs a forgery (m′, s ′).

We will use this adversary to solve a RSA challenge: given
(N, e, y), output yd mod N.

The adversary’s forgery will be used to compute yd mod N,
without knowing d .
If solving such RSA challenge is assumed to be hard, then
producing a forgery must be hard.

Jean-Sébastien Coron The RSA cryptosystem

Security proof for FDH

Forger Reduction

(N, e, y)

yd mod N

pk = (N, e)

mi

H(mi)

mi

σi

m′, σ′

j ← [1, qhash + qsig + 1]

i 6= j : H(mi) = r ei mod N

i = j : H(mj) = y mod N

i 6= j : σi = ri mod N

i = j : ⊥

m′ = mj : σ′ = yd mod N

Jean-Sébastien Coron The RSA cryptosystem

Security proof for FDH

Let qhash be the number of hash queries and qsig be the
number of signature queries.

Select a random j ∈ [1, qhash + qsig + 1].

Answering a hash query for the i-th message mi :

If i 6= j , answer H(mi) = r ei mod N for random ri .
If i = j , answer H(mj) = y where y is the challenge.

Answering a signature query for mi :

If i 6= j , answer σi = H(mi)
d = ri mod N, otherwise (if i = j)

abort.
We can answer all signature queries,
except for message mj

Jean-Sébastien Coron The RSA cryptosystem

Using the forgery

Let (m′, σ′) be the forgery
We assume that the adversary has already made a hash query
for m′, i.e. , m′ = mi for some i .

Otherwise we can simulate this query.

Then if i = j , then σ′ = H(mj)
d = yd mod N.

We return σ′ as the solution to the RSA challenge (N, e, y).

Our reduction succeeds if i = j :

Since j was selected at random in [1, qhash + qsig + 1]
this happens with probability 1/(qhash + qsig + 1)

Jean-Sébastien Coron The RSA cryptosystem

Success probability

From a forger that breaks FDH with probability ε in time t,
we can invert RSA with probability ε′ = ε/(qhash + qsig + 1) in
time t ′ close to t.

Conversely, if we assume that it is impossible to invert RSA
with probability greater than ε′ in time t ′, it is impossible to
break FDH with probability greater than

ε = (qhash + qsig + 1) · ε′

in time t close to t ′.

This gives us a security guarantee
the FDH signature scheme is secure
if inverting RSA is hard.

Jean-Sébastien Coron The RSA cryptosystem

Improving the security bound [C00]

Instead of letting H(mi) = r ei mod N for all i 6= j and
H(mj) = y , one lets

H(mi) = r ei mod N with probability α
H(mi) = r ei · y mod N with probabiliy 1− α

2 kinds of messages mi :
When H(mi) = r ei mod N one can answer the signature query
but not use a forgery for mi .

σi = H(mi)
d = ri mod N.

When H(mi) = r ei · y mod N one cannot answer the signature
query but we can use a forgery to compute yd mod N.

If H(mi) = y · r ei mod N, then σi = H(mi)
d = yd · ri mod N

and return yd = σi/ri mod N.

Optimize for α.

Jean-Sébastien Coron The RSA cryptosystem

Improving the security bound of FDH

Probability that all signature queries are answered:

A signature query is answered with probability α
At most qsig signature queries ⇒ P ≥ αqsig

Probability that the forgery (mi , σ
′) is useful :

Useful if H(mi) = r ei · y mod N, so with probability 1− α
Global success probability :

f (α) = αqsig · (1− α)
f (α) is maximum for αm = 1− 1/(qsig + 1)
f (αm) ' 1/(exp(1) · qsig) for large qsig

Jean-Sébastien Coron The RSA cryptosystem

Improved security bound for FDH

From a forger that breaks FDH with probability ε in time t,
we can invert RSA with probability ε′ = ε/(4 · qsig) in time t ′

close to t.

Conversely, if we assume that it is impossible to invert RSA
with probability greater than ε′ in time t ′, it is impossible to
break FDH with probability greater than ε = 4 · qsig · ε′ in
time t close to t ′.

Concrete values

With qhash = 260 and qsig = 230, we obtain ε = 232ε′ instead
of ε = 260 · ε′ ⇒ more secure for a given modulus size k.
A smaller RSA modulus can be
used for the same level of security:
improved efficiency.

Jean-Sébastien Coron The RSA cryptosystem

The PSS signature scheme

PSS (Bellare and Rogaway, Eurocrypt’96)

IEEE P1363a and PKCS#1 v2.1.
2 variants: PSS and PSS-R (message recovery)
Provably secure against chosen-message attacks, in the
random oracle model.
PSS-R: µ(M, r) = ω‖s, σ = µ(M, r)d mod N

���

�

�

� �

Tight security proof

ε′ ' ε, so no security loss.

Jean-Sébastien Coron The RSA cryptosystem

Implementation attacks

The implementation of a cryptographic algorithm can reveal
more information

Passive attacks :

Timing attacks (Kocher, 1996): measure the execution time
Power attacks (Kocher et al., 1999): measure the power
consumption

Active attacks :

Fault attacks [BDL97]: induce a fault during computation
Invasive attacks: probing.

Jean-Sébastien Coron The RSA cryptosystem

Fault attack against RSA-CRT

Induce a fault during computation

By modifying the input voltage

RSA with CRT: to compute s = md mod N, compute :

sp = mdp (mod p) where dp = d (mod p − 1)
sq = mdq (mod q) where dq = d (mod q − 1)
and recombine sp and sq using CRT to get s = md (mod N)

Fault attack against RSA with CRT [BDL97]

If sp is incorrect, then se 6= m (mod N) while se = m (mod q)
Therefore, gcd(N, se −m mod N) gives the prime factor q.

Jean-Sébastien Coron The RSA cryptosystem

