Algorithmic Number Theory and Public-key Cryptography Course 5

Jean-Sébastien Coron

University of Luxembourg

April 11, 2018

- Algorithmic number theory.
 - Generators of \mathbb{Z}_p
 - The discrete-log problem
- Discrete-log based cryptosystems
 - Diffie-Hellmann key exchange
 - ElGamal encryption: security proof

Groups

- Definitions
 - A group *G* is *finite* if |*G*| is finite. The number of elements in a finite group is called its *order*.
 - A group G is cyclic if there is an element g ∈ G such that for each h ∈ G there is an integer i such that h = gⁱ. Such an element g is called a generator of G.
 - Let G be a finite group and a ∈ G. The order of a is definded to be the least positive integer t such that a^t = 1.
- Facts
 - Let *G* be finite group and *a* ∈ *G*. The order of *a* divides the order of *G*.
 - Let G be a cyclic group of order n and d|n, then G has exactly $\phi(d)$ elements of order d. In particular, G has $\phi(n)$ generators.

周 ト イ ヨ ト イ ヨ ト

- Let *p* be a prime integer.
 - The set Z^{*}_p is the set of integers modulo p which are invertible modulo p.
 - The set Z^{*}_p is a cyclic group of order p − 1 for the operation of multiplication modulo p.
- Generators of \mathbb{Z}_p^* :
 - There exists $g \in \mathbb{Z}_p^*$ such that any $h \in \mathbb{Z}_p^*$ can be uniquely written as $h = g^{\times} \mod p$ with $0 \le x .$
 - The integer x is called the *discrete logarithm* of h to the base g, and denoted log_g h.

- Finding a generator of \mathbb{Z}_p^* for prime p.
 - The factorization of p-1 is needed. Otherwise, no efficient algorithm is known.
 - Factoring is hard, but it is possible to generate p such that the factorization of p-1 is known.
- Generator of \mathbb{Z}_p^*
 - $g \in \mathbb{Z}_p^*$ is a generator of \mathbb{Z}_p^* if and only if $g^{(p-1)/q} \neq 1 \mod p$ for each prime factor q of p-1.
 - There are $\phi(p-1)$ generators of \mathbb{Z}_p^*

Finding a generator

• Let $q_1, \ldots q_r$ be the prime factors of p-1

- 1) Generate a random $g \in \mathbb{Z}_p^*$
- 2) For i = 1 to r do
 - Compute $\alpha_i = g^{(p-1)/q_i} \mod p$
 - If $\alpha_i = 1 \mod p$, go back to step 1.
- 3) Output g as a generator of \mathbb{Z}_p^*
- Complexity:
 - There are $\phi(p-1)$ generators of \mathbb{Z}_p^* .
 - A random $g \in \mathbb{Z}_p^*$ is a generator with probability $\phi(p-1)/(p-1)$.
 - If $p-1 = 2 \cdot q$ for prime q, then $\phi(p-1) = q-1$ and this probability is $\simeq 1/2$.

- Goal: generate p such that $p 1 = 2 \cdot q$ for prime q.
 - Generate a random prime *p*.
 - Test if q = (p 1)/2 is prime. Otherwise, generate another p.
- Finding a generator g for \mathbb{Z}_p^*
 - Generate a random $g\in\mathbb{Z}_p^*$ with $g
 eq\pm 1$
 - Check that $g^q \neq 1 \mod p$. Otherwise, generate another g.
 - Complexity :
 - There are $\phi(p-1) = q-1$ generators.
 - g is a generator with probability $\simeq 1/2$.

伺い イラト イラト

- Let g be a generator of \mathbb{Z}_p^*
 - For all $a \in \mathbb{Z}_p^*$, a can be written uniquely as $a = g^x \mod p$ for $0 \le x .$
 - The integer x is called the *discrete logarithm* of a to the base g, and denoted log_g a.
- Computing discrete logarithms in \mathbb{Z}_p^*
 - Hard problem: no efficient algorithm is known for large p.
 - Brute force: enumerate all possible x. Complexity $\mathcal{O}(p)$.
 - Baby step/giant step method: complexity $\mathcal{O}(\sqrt{p})$.

- We want to work in a prime-order subgroup of \mathbb{Z}_p^*
 - Generate p, q such that $p 1 = 2 \cdot q$ and p, q are prime
 - Find a generator g of \mathbb{Z}_p^*
 - Then g' = g² mod p is a generator of a subgroup G of Z^{*}_p of prime order q.

Baby step/giant step method

- Given a = g^x mod p where 0 ≤ x
- Let $m = \lfloor \sqrt{p} \rfloor$. Build a table:

$$L = \left\{ \left(g^i \mod p, i \right) | 0 \le i < m \right\}$$

and sort L according to the first component $g^i \mod p$.

- Size: $\mathcal{O}(\sqrt{p} \log p)$. Time: $\mathcal{O}(\sqrt{p} \log^2 p)$.
- Compute the sequence of values a · g^{-j·m} mod p, until a collision with gⁱ is found in the table L, which gives:

$$a \cdot g^{-j \cdot m} = g^i \mod p \Rightarrow a = g^{j \cdot m + i} \mod p \Rightarrow x = j \cdot m + i$$

• Time: $\mathcal{O}(\sqrt{p}\log^2 p)$. Memory: $\mathcal{O}(\sqrt{p}\log p)$

Discrete Logarithms in groups of order q^e

- Let p be a prime and g a generator of a subgroup of Z^{*}_p of order q^e for some q, where e > 1.
- Given $a = g^x \mod p$ for $0 \le x < q^e$, we wish to compute x.
- We write $x = u \cdot q + v$ where $0 \le v < q$ and $0 \le u < q^{e-1}$
 - $a^{q^{e-1}} = \left(g^{q^{e-1}}\right)^{\times} = \left(g^{q^{e-1}}\right)^{\vee} \mod p$
 - We compute v by using the previous method in the subgroup of order q generated by g^{q^{e-1}}
- a · g^{-v} = (g^q)^u so we compute u recursively, in the subgroup of order q^{e-1} generated by g^q.
- Time complexity $\mathcal{O}(e \cdot \sqrt{q} \cdot \log^2 p)$

Discrete Logarithms in \mathbb{Z}_p^*

• Let *p* be a prime and we know the factorization

$$p-1=\prod_{i=1}^r q_i^e$$

Given a = g^x mod p for 0 ≤ x *</sup>_p, we wish to compute x.

• For
$$1 \le i \le r$$
 we have:

$$a^{(p-1)/q_i^{e_i}} = \left(g^{(p-1)/q_i^{e_i}}\right)^{\times} = \left(g^{(p-1)/q_i^{e_i}}\right)^{\times \mod q_i^{e_i}} \mod p$$

- We compute $x_i = x \mod q_i^{e_i}$ for all $1 \le i \le r$ by using the previous method in the subgroup generated by $g^{(p-1)/q_i^{e_i}}$
- Using CRT we find x from the x_i's.
- Complexity $\mathcal{O}(\sqrt{q} \cdot \log^k p)$, where $q = \max q_i$
- The hardness of computing discrete logarithms in Z^{*}_p is determined by the size of the largest prime factor of p − 1.
 - In general we work in a subgroup of \mathbb{Z}_p^* of prime order.

- Enables Alice and Bob to establish a shared secret key that nobody else can compute, without having talked to each other before.
- Key generation
 - Let p a prime integer, and let g be a generator of Z^{*}_p. p and g are public.
 - Alice generates a random x and publishes X = g^x mod p. She keeps x secret.
 - Bob generates a random y and publishes Y = g^y mod p. He keeps y secret.

伺 ト イ ヨ ト イ ヨ ト

Diffie-Hellman protocol

- Key establishment
 - Alice sends X to Bob. Bob sends Y to Alice.
 - Alice computes $K_a = Y^x \mod p$
 - Bob computes $K_b = X^y \mod p$

$$K_a = Y^x = (g^y)^x = g^{xy} = (g^x)^y = X^y = K_b$$

• Alice and Bob now share the same key $K = K_a = K_b$

- Without knowing x or y, the adversary is unable to compute K.
- Computing g^{xy} from g^x and g^y is called the *Diffie-Hellman* problem, for which no efficient algorithm is known.
- The best known algorithm for solving the Diffie-Hellman problem is to compute the discrete logarithm of g^x or g^y.

El-Gamal encryption

- Key generation
 - Let G be a subgroup of Z^{*}_p of prime order q and g a generator of G. _
 - Let $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$. Let $h = g^{\times} \mod p$.
 - Public-key : (g, h). Private-key : x
- Encryption of $m \in G$:
 - Let $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$
 - Output $c = (g^r, h^r \cdot m)$
- Decryption of $c = (c_1, c_2)$
 - Output $m = c_2/(c_1^{\scriptscriptstyle X}) \bmod p$

- To recover m from $(g^r, h^r \cdot m)$
 - One must find h^r from $(g, g^r, h = g^x)$
- Computational Diffie-Hellman problem (CDH) :
 - Given (g, g^a, g^b) , find g^{ab}
 - No efficient algorithm is known.
 - Best algorithm is finding the discrete-log
- However, attacker may already have some information about the plaintext !

Semantic security

- Indistinguishability of encryption (IND-CPA)
 - The attacker receives *pk*
 - The attacker outputs two messages m_0, m_1
 - The attacker receives encryption of m_{β} for random bit β .
 - $\bullet~$ The attacker outputs a "guess" β' of β
- Adversary's advantage :
 - Adv = $|\Pr[\beta' = \beta] \frac{1}{2}|$
 - A scheme is IND-CPA secure if the advantage of any computationally bounded adversary is a negligible function of the security parameter.
 - This means that the adversary's success probability is not better than flipping a coin.

Proof of security

- Reductionist proof :
 - If there is an attacker who can break IND-CPA with non-negligible probability,
 - then we can use this attacker to solve DDH with non-negligible probability
- The Decision Diffie-Hellmann problem (DDH) :
 - Given (g, g^a, g^b, z) where $z = g^{ab}$ if $\gamma = 1$ and $z \stackrel{R}{\leftarrow} G$ if $\gamma = 0$, where γ is random bit, find γ .
 - $\operatorname{Adv}_{DDH} = |\operatorname{Pr}[\gamma' = \gamma] \frac{1}{2}|$
 - No efficient algorithm known when G is a prime-order subgroup of Z^{*}_p.

- We get (g, g^a, g^b, z) and must determine if $z = g^{ab}$
 - We give $pk = (g, h = g^a = g^x)$ to the adversary
 - sk = a = x is unknown.
 - Adversary sends m_0, m_1
 - We send $c = (g^b = g^r, z \cdot m_\beta)$ for random bit β
 - Adversary outputs β' and we output $\gamma' = 1$ (corresponding to $z = g^{ab}$) if $\beta' = \beta$ and 0 otherwise.

Analysis

• If $\gamma = 0$, then z is random in G

- Adversary gets no information about β , because m_{β} is perfectly masked by a random.
- Therefore $\Pr[\beta' = \beta | \gamma = 0] = 1/2$

•
$$\Pr[\gamma' = \gamma | \gamma = 0] = 1/2$$

• If $\gamma = 1$, then $z = g^{ab} = g^{rx} = h^r$ where $h = g^x$.

- c is a legitimate El-Gamal ciphertext.
- Therefore the attacker wins ($\beta'=\beta)$ with probability $1/2\pm {\rm Adv}_{\cal A}$
- We can take wlog $\Pr[\beta'=\beta|\gamma=1]=1/2+\mathsf{Adv}_{\mathcal{A}}$
- Therefore $\Pr[\gamma'=\gamma|\gamma=1]=1/2+\mathsf{Adv}_{\mathcal{A}}$

伺 ト イ ヨ ト イ ヨ ト

• We have:

•
$$\Pr[\gamma' = \gamma | \gamma = 0] = 1/2$$

• $\Pr[\gamma' = \gamma | \gamma = 1] = 1/2 + \operatorname{Adv}_A$

• Therefore:

$$\mathsf{Adv}_{DDH} = \left|\mathsf{Pr}[\gamma' = \gamma] - \frac{1}{2}\right| = \frac{\mathsf{Adv}_{\mathcal{A}}}{2}$$

・ロト ・回ト ・ヨト ・ヨト

æ

- $Adv_{DDH} = \frac{Adv_A}{2}$
 - From an adversary running in time t_A with advantage Adv_A , we can construct a DDH solver running in time $t_A + O(k^2)$ with advantage $\frac{Adv_A}{2}$.
 - where k is the security parameter.
- El-Gamal is IND-CPA under the DDH assumption
 - Conversely, if no algorithm can solve DDH in time t with advantage > ε , no adversary can break El-Gamal in time t O(k) with advantage > $2 \cdot \varepsilon$

- El-Gamal is not chosen-ciphertext secure
 - Given $c = (g^r, h^r \cdot m)$ where pk = (g, h)
 - Ask for the decryption of $c' = (g^{r+1}, h^{r+1} \cdot m)$ and recover m.
- The Cramer-Shoup encryption scheme (1998)
 - Can be seen as extension of El-Gamal.
 - Chosen-ciphertext secure (IND-CCA) without random oracle.

Key generation

- Let G a group of prime order q
- Generate random $g_1, g_2 \in G$ and randoms $x_1, x_2, y_1, y_2, z \in \mathbb{Z}_q$
- Let $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}, h = g_1^z$
- Let *H* be a hash function
- $pk = (g_1, g_2, c, d, h, H)$ and $sk = (x_1, x_2, y_1, y_2, z)$
- Encryption of $m \in G$
 - Generate a random $r \in \mathbb{Z}_q$
 - $C = (g_1^r, g_2^r, h^r m, c^r d^{r\alpha})$
 - where $\alpha = H(g_1^r, g_2^r, h^r m)$

The Cramer-Shoup cryptosystem

• Decryption of
$$C = (u_1, u_2, e, v)$$

• Compute $\alpha = H(u_1, u_2, v)$ and test if :

$$u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha} = v$$

- Output "reject" if the condition does not hold.
- Otherwise, output :

$$m = e/(u_1)^z$$

- INC-CCA security
 - Cramer-Shoup is secure secure against adaptive chosen ciphertext attack
 - under the decisional Diffie-Hellman assumption,
 - without the random oracle model.
- Decision Diffie-Hellman problem:
 - Given (g, g^x, g^y, z) where $z = g^{xy}$ if b = 0 and $z \leftarrow G$ if b = 1, where $b \leftarrow \{0, 1\}$, guess b.