Algorithmic Number Theory and Public-key Cryptography Course 5

Jean-Sébastien Coron

University of Luxembourg
April 11, 2018

- Algorithmic number theory.
- Generators of \mathbb{Z}_{p}
- The discrete-log problem
- Discrete-log based cryptosystems
- Diffie-Hellmann key exchange
- ElGamal encryption: security proof

Groups

- Definitions
- A group G is finite if $|G|$ is finite. The number of elements in a finite group is called its order.
- A group G is cyclic if there is an element $g \in G$ such that for each $h \in G$ there is an integer i such that $h=g^{i}$. Such an element g is called a generator of G.
- Let G be a finite group and $a \in G$. The order of a is definded to be the least positive integer t such that $a^{t}=1$.
- Facts
- Let G be finite group and $a \in G$. The order of a divides the order of G.
- Let G be a cyclic group of order n and $d \mid n$, then G has exactly $\phi(d)$ elements of order d. In particular, G has $\phi(n)$ generators.
- Let p be a prime integer.
- The set \mathbb{Z}_{p}^{*} is the set of integers modulo p which are invertible modulo p.
- The set \mathbb{Z}_{p}^{*} is a cyclic group of order $p-1$ for the operation of multiplication modulo p.
- Generators of \mathbb{Z}_{p}^{*} :
- There exists $g \in \mathbb{Z}_{p}^{*}$ such that any $h \in \mathbb{Z}_{p}^{*}$ can be uniquely written as $h=g^{x} \bmod p$ with $0 \leq x<p-1$.
- The integer x is called the discrete logarithm of h to the base g, and denoted $\log _{g} h$.
- Finding a generator of \mathbb{Z}_{p}^{*} for prime p.
- The factorization of $p-1$ is needed. Otherwise, no efficient algorithm is known.
- Factoring is hard, but it is possible to generate p such that the factorization of $p-1$ is known.
- Generator of \mathbb{Z}_{p}^{*}
- $g \in \mathbb{Z}_{p}^{*}$ is a generator of \mathbb{Z}_{p}^{*} if and only if $g^{(p-1) / q} \neq 1 \bmod p$ for each prime factor q of $p-1$.
- There are $\phi(p-1)$ generators of \mathbb{Z}_{p}^{*}

Finding a generator

- Let $q_{1}, \ldots q_{r}$ be the prime factors of $p-1$
- 1) Generate a random $g \in \mathbb{Z}_{p}^{*}$
- 2) For $i=1$ to r do
- Compute $\alpha_{i}=g^{(p-1) / q_{i}} \bmod p$
- If $\alpha_{i}=1 \bmod p$, go back to step 1 .
- 3) Output g as a generator of \mathbb{Z}_{p}^{*}
- Complexity:
- There are $\phi(p-1)$ generators of \mathbb{Z}_{p}^{*}.
- A random $g \in \mathbb{Z}_{p}^{*}$ is a generator with probability $\phi(p-1) /(p-1)$.
- If $p-1=2 \cdot q$ for prime q, then $\phi(p-1)=q-1$ and this probability is $\simeq 1 / 2$.

Generating p and q

- Goal: generate p such that $p-1=2 \cdot q$ for prime q.
- Generate a random prime p.
- Test if $q=(p-1) / 2$ is prime. Otherwise, generate another p.
- Finding a generator g for \mathbb{Z}_{p}^{*}
- Generate a random $g \in \mathbb{Z}_{p}^{*}$ with $g \neq \pm 1$
- Check that $g^{q} \neq 1 \bmod p$. Otherwise, generate another g.
- Complexity :
- There are $\phi(p-1)=q-1$ generators.
- g is a generator with probability $\simeq 1 / 2$.

Discrete logarithm

- Let g be a generator of \mathbb{Z}_{p}^{*}
- For all $a \in \mathbb{Z}_{p}^{*}$, a can be written uniquely as $a=g^{x} \bmod p$ for $0 \leq x<p-1$.
- The integer x is called the discrete logarithm of a to the base g, and denoted $\log _{g} a$.
- Computing discrete logarithms in \mathbb{Z}_{p}^{*}
- Hard problem: no efficient algorithm is known for large p.
- Brute force: enumerate all possible x. Complexity $\mathcal{O}(p)$.
- Baby step/giant step method: complexity $\mathcal{O}(\sqrt{p})$.
- We want to work in a prime-order subgroup of \mathbb{Z}_{p}^{*}
- Generate p, q such that $p-1=2 \cdot q$ and p, q are prime
- Find a generator g of \mathbb{Z}_{p}^{*}
- Then $g^{\prime}=g^{2} \bmod p$ is a generator of a subgroup G of \mathbb{Z}_{p}^{*} of prime order q.

Baby step/giant step method

- Given $a=g^{x} \bmod p$ where $0 \leq x<p-1$, we wish to compute x.
- Let $m=\lfloor\sqrt{p}\rfloor$. Build a table:

$$
L=\left\{\left(g^{i} \bmod p, i\right) \mid 0 \leq i<m\right\}
$$

and sort L according to the first component $g^{i} \bmod p$.

- Size: $\mathcal{O}(\sqrt{p} \log p)$. Time: $\mathcal{O}\left(\sqrt{p} \log ^{2} p\right)$.
- Compute the sequence of values $a \cdot g^{-j \cdot m} \bmod p$, until a collision with g^{i} is found in the table L, which gives:

$$
a \cdot g^{-j \cdot m}=g^{i} \bmod p \Rightarrow a=g^{j \cdot m+i} \bmod p \Rightarrow x=j \cdot m+i
$$

- Time: $\mathcal{O}\left(\sqrt{p} \log ^{2} p\right)$. Memory: $\mathcal{O}(\sqrt{p} \log p)$

Discrete Logarithms in groups of order q^{e}

- Let p be a prime and g a generator of a subgroup of \mathbb{Z}_{p}^{*} of order q^{e} for some q, where $e>1$.
- Given $a=g^{x} \bmod p$ for $0 \leq x<q^{e}$, we wish to compute x.
- We write $x=u \cdot q+v$ where $0 \leq v<q$ and $0 \leq u<q^{e-1}$
- $a^{q^{e-1}}=\left(g^{q^{e-1}}\right)^{X}=\left(g^{q^{e-1}}\right)^{v} \bmod p$
- We compute v by using the previous method in the subgroup of order q generated by $g^{q^{e-}}$
- $a \cdot g^{-v}=\left(g^{q}\right)^{u}$ so we compute u recursively, in the subgroup of order q^{e-1} generated by g^{q}.
- Time complexity $\mathcal{O}\left(e \cdot \sqrt{q} \cdot \log ^{2} p\right)$
- Let p be a prime and we know the factorization

$$
p-1=\prod_{i=1}^{r} q_{i}^{e_{i}}
$$

- Given $a=g^{x} \bmod p$ for $0 \leq x<p-1$ where g is a generator of \mathbb{Z}_{p}^{*}, we wish to compute x.
- For $1 \leq i \leq r$ we have:

$$
a^{(p-1) / q_{i}^{e_{i}}}=\left(g^{(p-1) / q_{i}^{e_{i}}}\right)^{x}=\left(g^{(p-1) / q_{i}^{e_{i}}}\right)^{x \bmod q_{i}^{e_{i}}} \bmod p
$$

- We compute $x_{i}=x \bmod q_{i}^{e_{i}}$ for all $1 \leq i \leq r$ by using the previous method in the subgroup generated by $g^{(p-1) / q_{i}^{e_{i}}}$
- Using CRT we find x from the x_{i} 's.
- Complexity $\mathcal{O}\left(\sqrt{q} \cdot \log ^{k} p\right)$, where $q=\max q_{i}$
- The hardness of computing discrete logarithms in \mathbb{Z}_{p}^{*} is determined by the size of the largest prime factor of $p-1$.
- In general we work in a subgroup of \mathbb{Z}_{p}^{*} of prime order.

Diffie-Hellman protocol

- Enables Alice and Bob to establish a shared secret key that nobody else can compute, without having talked to each other before.
- Key generation
- Let p a prime integer, and let g be a generator of $\mathbb{Z}_{p}^{*} . p$ and g are public.
- Alice generates a random x and publishes $X=g^{x} \bmod p$. She keeps x secret.
- Bob generates a random y and publishes $Y=g^{y} \bmod p$. He keeps y secret.

Diffie-Hellman protocol

- Key establishment
- Alice sends X to Bob. Bob sends Y to Alice.
- Alice computes $K_{a}=Y^{\times} \bmod p$
- Bob computes $K_{b}=X^{y} \bmod p$

$$
K_{a}=Y^{x}=\left(g^{y}\right)^{x}=g^{x y}=\left(g^{x}\right)^{y}=X^{y}=K_{b}
$$

- Alice and Bob now share the same key $K=K_{a}=K_{b}$
- Without knowing x or y, the adversary is unable to compute K.
- Computing $g^{x y}$ from g^{x} and g^{y} is called the Diffie-Hellman problem, for which no efficient algorithm is known.
- The best known algorithm for solving the Diffie-Hellman problem is to compute the discrete logarithm of g^{x} or g^{y}.

El-Gamal encryption

- Key generation
- Let G be a subgroup of \mathbb{Z}_{p}^{*} of prime order q and g a generator of G.
- Let $x \stackrel{R}{\leftarrow} \mathbb{Z}_{q}$. Let $h=g^{x} \bmod p$.
- Public-key: (g, h). Private-key : x
- Encryption of $m \in G$:
- Let $r \stackrel{R}{\leftarrow} \mathbb{Z}_{q}$
- Output $c=\left(g^{r}, h^{r} \cdot m\right)$
- Decryption of $c=\left(c_{1}, c_{2}\right)$
- Output $m=c_{2} /\left(c_{1}^{x}\right) \bmod p$

Security of El-Gamal

- To recover m from $\left(g^{r}, h^{r} \cdot m\right)$
- One must find h^{r} from ($g, g^{r}, h=g^{x}$)
- Computational Diffie-Hellman problem (CDH) :
- Given $\left(g, g^{a}, g^{b}\right)$, find $g^{a b}$
- No efficient algorithm is known.
- Best algorithm is finding the discrete-log
- However, attacker may already have some information about the plaintext!

Semantic security

- Indistinguishability of encryption (IND-CPA)
- The attacker receives $p k$
- The attacker outputs two messages m_{0}, m_{1}
- The attacker receives encryption of m_{β} for random bit β.
- The attacker outputs a "guess" β^{\prime} of β
- Adversary's advantage :
- $\operatorname{Adv}=\left|\operatorname{Pr}\left[\beta^{\prime}=\beta\right]-\frac{1}{2}\right|$
- A scheme is IND-CPA secure if the advantage of any computationally bounded adversary is a negligible function of the security parameter.
- This means that the adversary's success probability is not better than flipping a coin.

Proof of security

- Reductionist proof :
- If there is an attacker who can break IND-CPA with non-negligible probability,
- then we can use this attacker to solve DDH with non-negligible probability
- The Decision Diffie-Hellmann problem (DDH) :
- Given $\left(g, g^{a}, g^{b}, z\right)$ where $z=g^{a b}$ if $\gamma=1$ and $z \stackrel{R}{\leftarrow} G$ if $\gamma=0$, where γ is random bit, find γ.
- $\operatorname{Adv}_{D D H}=\left|\operatorname{Pr}\left[\gamma^{\prime}=\gamma\right]-\frac{1}{2}\right|$
- No efficient algorithm known when G is a prime-order subgroup of \mathbb{Z}_{p}^{*}.

Proof of security

- We get $\left(g, g^{a}, g^{b}, z\right)$ and must determine if $z=g^{a b}$
- We give $p k=\left(g, h=g^{a}=g^{x}\right)$ to the adversary
- $s k=a=x$ is unknown.
- Adversary sends m_{0}, m_{1}
- We send $c=\left(g^{b}=g^{r}, z \cdot m_{\beta}\right)$ for random bit β
- Adversary outputs β^{\prime} and we output $\gamma^{\prime}=1$ (corresponding to $z=g^{a b}$) if $\beta^{\prime}=\beta$ and 0 otherwise.

Analysis

- If $\gamma=0$, then z is random in G
- Adversary gets no information about β, because m_{β} is perfectly masked by a random.
- Therefore $\operatorname{Pr}\left[\beta^{\prime}=\beta \mid \gamma=0\right]=1 / 2$
- $\operatorname{Pr}\left[\gamma^{\prime}=\gamma \mid \gamma=0\right]=1 / 2$
- If $\gamma=1$, then $z=g^{a b}=g^{r x}=h^{r}$ where $h=g^{x}$.
- c is a legitimate El-Gamal ciphertext.
- Therefore the attacker wins $\left(\beta^{\prime}=\beta\right)$ with probability $1 / 2 \pm$ Adv $_{A}$
- We can take wlog $\operatorname{Pr}\left[\beta^{\prime}=\beta \mid \gamma=1\right]=1 / 2+\operatorname{Adv}_{A}$
- Therefore $\operatorname{Pr}\left[\gamma^{\prime}=\gamma \mid \gamma=1\right]=1 / 2+\operatorname{Adv}_{A}$
- We have:
- $\operatorname{Pr}\left[\gamma^{\prime}=\gamma \mid \gamma=0\right]=1 / 2$
- $\operatorname{Pr}\left[\gamma^{\prime}=\gamma \mid \gamma=1\right]=1 / 2+\operatorname{Adv}_{A}$

$$
\begin{aligned}
\operatorname{Pr}\left[\gamma^{\prime}=\gamma\right]= & \operatorname{Pr}\left[\gamma^{\prime}=\gamma \mid \gamma=0\right] \cdot \operatorname{Pr}[\gamma=0]+ \\
& \operatorname{Pr}\left[\gamma^{\prime}=\gamma \mid \gamma=1\right] \cdot \operatorname{Pr}[\gamma=1] \\
\operatorname{Pr}\left[\gamma^{\prime}=\gamma\right]= & \frac{1}{2} \cdot \frac{1}{2}+\left(\frac{1}{2}+\operatorname{Adv}_{A}\right) \cdot \frac{1}{2} \\
\operatorname{Pr}\left[\gamma^{\prime}=\gamma\right]= & \frac{1}{2}+\frac{\operatorname{Adv}_{A}}{2}
\end{aligned}
$$

- Therefore:

$$
\operatorname{Adv}_{D D H}=\left|\operatorname{Pr}\left[\gamma^{\prime}=\gamma\right]-\frac{1}{2}\right|=\frac{\operatorname{Adv}_{A}}{2}
$$

Security of El-Gamal

- $\operatorname{Adv}_{D D H}=\frac{\operatorname{Adv}_{A}}{2}$
- From an adversary running in time t_{A} with advantage Adv_{A}, we can construct a DDH solver running in time $t_{A}+\mathcal{O}\left(k^{2}\right)$ with advantage $\frac{\operatorname{Adv}_{A}}{2}$.
- where k is the security parameter.
- El-Gamal is IND-CPA under the DDH assumption
- Conversely, if no algorithm can solve DDH in time t with advantage $>\varepsilon$, no adversary can break El-Gamal in time $t-\mathcal{O}(k)$ with advantage $>2 \cdot \varepsilon$

Chosen-ciphertext attack

- El-Gamal is not chosen-ciphertext secure
- Given $c=\left(g^{r}, h^{r} \cdot m\right)$ where $p k=(g, h)$
- Ask for the decryption of $c^{\prime}=\left(g^{r+1}, h^{r+1} \cdot m\right)$ and recover m.
- The Cramer-Shoup encryption scheme (1998)
- Can be seen as extension of El-Gamal.
- Chosen-ciphertext secure (IND-CCA) without random oracle.
- Key generation
- Let G a group of prime order q
- Generate random $g_{1}, g_{2} \in G$ and randoms $x_{1}, x_{2}, y_{1}, y_{2}, z \in \mathbb{Z}_{q}$
- Let $c=g_{1}^{x_{1}} g_{2}^{x_{2}}, d=g_{1}^{y_{1}} g_{2}^{y_{2}}, h=g_{1}^{z}$
- Let H be a hash function
- $p k=\left(g_{1}, g_{2}, c, d, h, H\right)$ and $s k=\left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)$
- Encryption of $m \in G$
- Generate a random $r \in \mathbb{Z}_{q}$
- $C=\left(g_{1}^{r}, g_{2}^{r}, h^{r} m, c^{r} d^{r \alpha}\right)$
- where $\alpha=H\left(g_{1}^{r}, g_{2}^{r}, h^{r} m\right)$
- Decryption of $C=\left(u_{1}, u_{2}, e, v\right)$
- Compute $\alpha=H\left(u_{1}, u_{2}, v\right)$ and test if :

$$
u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha}=v
$$

- Output "reject" if the condition does not hold.
- Otherwise, output :

$$
m=e /\left(u_{1}\right)^{z}
$$

- INC-CCA security
- Cramer-Shoup is secure secure against adaptive chosen ciphertext attack
- under the decisional Diffie-Hellman assumption,
- without the random oracle model.
- Decision Diffie-Hellman problem:
- Given $\left(g, g^{x}, g^{y}, z\right)$ where $z=g^{x y}$ if $b=0$ and $z \leftarrow G$ if $b=1$, where $b \leftarrow\{0,1\}$, guess b.

