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Overview

What is Fully Homomorphic Encryption (FHE) ?

Basic properties
Cloud computing on encrypted data: the server should process
the data without learning the data.

4 generations of FHE:

1st gen: [Gen09], [DGHV10]: bootstrapping, slow
2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).
3rd gen: [GSW13]: no modulus
switching, slow noise growth
4th gen: [CKKS17]: approximate
computation
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Homomorphic Encryption

Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)
e mod N
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Homomorphic Encryption with RSA

Multiplicative property of RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c = c1 · c2 = (m1 ·m2)
e mod N

Homomorphic encryption: given c1 and c2, we can compute
the ciphertext c for m1 ·m2 mod N

using only the public-key
without knowing the plaintexts m1 and m2.
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Homomorphism of RSA

RSA homomorphism: decryption function δ(x) = xd mod N

δ(c1 × c2) = δ(c1)× δ(c2) (mod N)

Ciphertexts Z/NZ× Z/NZ Z/NZ

Plaintexts Z/NZ× Z/NZ Z/NZ

×

δ,δ δ

×
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Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem [P99]

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Ciphertexts Z/N2Z× Z/N2Z Z/N2Z

Plaintexts Z/NZ× Z/NZ Z/NZ

×

δ,δ δ

+

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



Application of Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Application: e-voting.

Voter i encrypts his vote mi ∈ {0, 1} into:

ci = gmi · zNi mod N2

Votes can be aggregated using only the public-key:

c =
∏
i

ci = g

∑
i

mi

· z mod N2

c is eventually decrypted to recover
m =

∑
i mi
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Fully homomorphic encryption

Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)
e mod N

Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Fully homomorphic: homomorphic for both addition and
multiplication

Open problem until Gentry’s
breakthrough in 2009.
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Fully homomorphic public-key encryption

We restrict ourselves to public-key encryption of a single bit:

0
Epk−→ 203ef6124 . . . 23ab8716, 1

Epk−→ b327653c1 . . . db326516
Encryption must be probabilistic.

Fully homomorphic property

Given Epk(x) and Epk(y), one can compute Epk(x ⊕ y) and
Epk(x · y) without knowing the private-key.
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x y

+

x ⊕ y

x y

×

x · y

Epk(x) Epk(y)

+

Epk(x ⊕ y)

Epk(x) Epk(y)

×

Epk(x · y)

Ciphertext worldPlaintext world
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Evaluation of any function
Universality

We can evaluate homomorphically any boolean computable
function f : {0, 1}n → {0, 1}

x1 x2 x3 x4 x5

+ × ×

× + +

× +

×

f (x1, x2, x3, x4, x5)

Epk(x1) Epk(x2) Epk(x3) Epk(x4) Epk(x5)

+ × ×

× + +

× +

×

Epk(f (x1, x2, x3, x4, x5))

Ciphertext worldPlaintext world
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Outsourcing computation (1)

Alice wants to outsource the computation of f (x)

but she wants to keep x private

She encrypts the bits xi of x into ci = Epk(xi ) for her pk

and she sends the ci ’s to the server
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Outsourcing computation (2)

ci = Epk(xi )

The server homomorphically evaluates f (x)

by writing f (x) = f (x1, . . . , xn) as a boolean circuit.
Given Epk(xi ), the server eventually obtains c = Epk(f (x))

Finally Alice decrypts c into y = f (x)

The server does not learn x .
Only Alice can decrypt to recover f (x).
Alice could also keep f private.
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Outsourcing computation (2)

ci = Epk(xi )

c = Epk(f (x))
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Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



Fully Homomorphic Encryption: first generation

1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
Public-key compression [CNT12]
Batch and homomorphic evaluation of AES [CCKLLTY13].
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The DGHV Scheme

Ciphertext for m ∈ {0, 1}:

c = q · p + 2r +m

where p is the secret-key, q and r are randoms.

Decryption:
(c mod p) mod 2 = m

Parameters:

c =

γ ≃ 2 · 107 bits

p : η ≃ 2700 bits

r : ρ ≃ 71 bits
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Homomorphic Properties of DGHV

Addition:

c1 = q1 · p + 2r1 +m1

c2 = q2 · p + 2r2 +m2
⇒ c1 + c2 = q′ · p + 2r ′ +m1 +m2

c1 + c2 is an encryption of m1 +m2 mod 2 = m1 ⊕m2

Multiplication:

c1 = q1 · p + 2r1 +m1

c2 = q2 · p + 2r2 +m2
⇒ c1 · c2 = q′′ · p + 2r ′′ +m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

c1 · c2 is an encryption of m1 ·m2

Noise becomes twice larger.
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Homomorphism of DGHV

DGHV ciphertext:

c = q · p + 2r +m

Homomorphism: δ(x) = (x mod p) mod 2

only works if noise r is smaller than p

Ciphertexts Z× Z Z

Plaintexts Z2 × Z2 Z2

+,×

δ,δ δ

⊕,×
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Somewhat homomorphic scheme

The number of multiplications is limited.

Noise grows with the number of multiplications.
Noise must remain < p for correct decryption.

p

×

ρ

×

p

2ρ

×

p

4ρ

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



Public-key Encryption with DGHV

For now, encryption requires the knowledge of the secret p:

c = q · p + 2r +m

We can actually turn it into a public-key encryption scheme

Using the additively homomorphic property

Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.
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Bounding ciphertext size

DGHV multiplication over Z

c1 = q1 · p + 2r1 +m1

c2 = q2 · p + 2r2 +m2
⇒ c1 · c2 = q′ · p + 2r ′ +m1 ·m2

Problem: ciphertext size has doubled.

Constant ciphertext size

We publish an encryption of 0 without noise x0 = q0 · p
We reduce the product modulo x0

c3 = c1 · c2 mod x0

= q′′ · p + 2r ′ +m1 ·m2

Ciphertext size remains constant
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Public-key size

x1 =

γ ≃ 2 · 107 bits

x2 =

xi =

xτ =

τ ≃ 104

Public-key size:

τ · γ = 2 · 1011 bits = 25 GB !
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DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r +m

c =

γ ≃ 2 · 107 bits

p : η ≃ 2700 bits

r : ρ ≃ 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ≃ 2 700 bits instead of
2 · 107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r +m

c =

γ ≃ 2 · 107 bits

p : η ≃ 2700 bits

r : ρ ≃ 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ≃ 2 700 bits instead of
2 · 107 bits !
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Compressed Public Key

x1 =

γ ≃ 2 · 107 bits

x2 =

xi =

xτ =

τ ≃ 104

Old pk : 25 GB

η ≃ 2 700 bits

δ1 =

δ2 =

δi =

δτ =

New pk : 3.4 MB !
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Semantic security of DGHV

Semantic security [GM82] for m ∈ {0, 1}:
Knowing pk, the distributions Epk(0) and Epk(1) are
computationally hard to distinguish.

The DGHV scheme is semantically secure, under the
approximate-gcd assumption.

Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.
This remains the case with the compressed public-key, under
the random oracle model.
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The approximate GCD assumption

Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

Brute force attack on the noise

Given x0 = q0 · p and x1 = q1 · p + r1 with |r1| < 2ρ, guess r1
and compute gcd(x0, x1 − r1) to recover p.
Requires 2ρ gcd computation
Countermeasure: take a sufficiently large ρ
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Improved attack against PACD [CN12]

Given x0 = p · q0 and many xi = p · qi + ri , find p.

Improved attack in Õ(2ρ/2) [CN12]

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

= gcd

(
x0,

m−1∏
a=0

m−1∏
b=0

(x1 − b −m · a) mod x0

)
, where m = 2ρ/2

= gcd

(
x0,

m−1∏
a=0

f (a) mod x0

)

f (y) :=
m−1∏
b=0

(x1 − b −m · y) mod x0

Evaluate the polynomial f (y) at m
points in time Õ(m) = Õ(2ρ/2)
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Approximate GCD attack

Consider t integers: xi = p · qi + ri and x0 = p · q0.
Consider a vector u⃗ orthogonal to the xi ’s:

t∑
i=1

ui · xi = 0 mod x0

This gives
∑t

i=1 ui · ri = 0 mod p.

If the ui ’s are sufficiently small, since the ri ’s are small this
equality will hold over Z.

Such vector u⃗ can be found using LLL.

By collecting many orthogonal vectors one can recover r⃗ and
eventually the secret key p

Countermeasure

The size γ of the xi ’s must be
sufficiently large.
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The DGHV scheme (simplified)

Key generation:
Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
Size of p is η. Size of xi is γ. Size of ri is ρ.

Encryption of a message m ∈ {0, 1}:
Generate random εi ← {0, 1} and a random integer r in
(−2ρ′

, 2ρ
′
), and output the ciphertext:

c = m + 2r + 2
τ∑

i=1

εi · xi mod x0

Decryption:

c ≡ m + 2r + 2
τ∑

i=1

εi · ri (mod p)

Output m← (c mod p) mod 2
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The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0
c1 + c2 = m1 +m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0
c1 · c2 = m1 ·m2 + 2(m1 · r ′2 +m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.
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Gentry’s technique to get fully homomorphic encryption

To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

Only a polynomial f of small degree can computed
homomorphically, for F = {f (b1, . . . , bt) : deg f ≤ d}
Vpk(f ,Epk(b1), . . . ,Epk(bt))→ Epk(f (b1, . . . , bt))

Ciphertexts Ct C

Plaintexts (Z2)
t Z2

Vpk (f ,···)

Dsk (··· ) Dsk (·)

f

f ∈ F
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Ciphertext refresh: bootstrapping

Gentry’s breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

Evaluate the decryption polynomial not on the bits of the
ciphertext c and the secret key sk , but homomorphically on
the encryption of those bits.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption
Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:
refreshed
ciphertext
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Ciphertext refresh: bootstrapping

Gentry’s breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for
the same plaintext.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption
Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:
refreshed
ciphertext

will be explained in next lecture.
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Ciphertext refresh

Refreshed ciphertext:

If the degree of the decryption polynomial D(·, ·) is small
enough, the resulting noise in the new ciphertext can be
smaller than in the original ciphertext.

C

Refresh

C ⋆
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Fully homomorphic encryption

Fully homomorphic encryption

Using this “ciphertext refresh” procedure, the number of
homomorphic operations becomes unlimited
We get a fully homomorphic encryption scheme.

Refresh Refresh

×
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Four generations of FHE

First generation: bootstrapping, slow

Breakthrough scheme of Gentry [G09], based on ideal lattices.
FHE over the integers: [DGHV10]

Second generation: [BV11], [BGV11]

More efficient, (R)LWE based. Relinearization, depth-linear
construction with modulus switching.

Third generation [GSW13]

No modulus switching, slow noise growth
Improved bootstrapping: [BV14], [AP14]

Fourth gen: [CKKS17]

Approximate floating point arithmetic
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Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[x⃗ ]→ Zq[x ] given by evaluation at
secret s⃗ = (s1, . . . , sn)

Ciphertexts Zq[x⃗ ]× Zq[x⃗ ] Zq[x⃗ ]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (s⃗) = 2e +m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (x⃗) with
|fi (s⃗) mod q| ≪ q are comp. indist.
from random fi (x⃗) modulo q.
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Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[x⃗ ]→ Zq[x ] given by evaluation at
secret s⃗ = (s1, . . . , sn)

Ciphertexts Zq[x⃗ ]× Zq[x⃗ ] Zq[x⃗ ]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (s⃗) = 2e +m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (x⃗) with
|fi (s⃗) mod q| ≪ q are comp. indist.
from random fi (x⃗) modulo q.
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LWE-based encryption [R05]

Key generation
Secret-key: s ∈ (Zq)

n

Encryption of m ∈ {0, 1}
A vector c ∈ Fq such that

⟨c, s⟩ = 2e +m (mod q)

for a small error e.

· =

c

s

2e +m

Distribution of the error e
One can take the centered binomial distribution χ with
parameter κ.
Let e = h(u)− h(v) where u, v ← {0, 1}κ, where h is the
Hamming weight function.

Decryption
Compute m = (c · s mod q) mod 2
Decryption works if |e| < q/4
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LWE-based encryption: alternative encoding

The message m can also be encoded in the MSB.

Encryption of m ∈ {0, 1}
A vector c ∈ Fq such that

⟨c, s⟩ = e +m · ⌊q/2⌋ (mod q)

· =

c

s

e +m · ⌊q/2⌋

Decryption

Compute m = th(⟨c, s⟩ mod q)
where th(x) = 1 if x ∈ (q/4, 3q/4), and 0 otherwise.

0

q/4

q/2

3q/4
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LWE-based public-key encryption

Key generation

Secret-key: s ∈ (Zq)
n, with s1 = 1.

Public-key: A such that A · s = e for small e

Every row of A is an LWE encryption of 0.

Encryption of m ∈ {0, 1}
c = u · A+ (m · ⌊q/2⌉, 0, . . . , 0)

for a small u

· +
⌊q
2

⌉
· =m 0 0

u

A

c

Decryption

Compute m = th(⟨c, s⟩ mod q)
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RLWE-based schemes

RLWE-based scheme

We replace Zq by the polynomial ring
Rq = Zq[x ]/ < xℓ + 1 >, where ℓ is a power of 2.
Addition and multiplication of polynomials are performed
modulo xℓ + 1 and prime q.
We can take m ∈ R2 = Z2[x ]/ <xℓ + 1>
instead of {0, 1}: more bandwidth.

Ring Learning with Error (RLWE) assumption

t = a · s + e for small s, e ← R
Given t, a, it is difficult to recover s.
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RLWE-based public-key encryption

Key generation
t = a · s + e for random a← Rq and small s, e ← R.

Public-key encryption of m ∈ R2

c = (a · r + e1, t · r + e2 + ⌊q/2⌉m), for small e1, e2 and r .

Decryption of c = (u, v)
Compute m = th(v − s · u)

v − s · u = t · r + e2 + ⌊q/2⌉m − s · (a · r + e1)

= (t − a · s) · r + e2 + ⌊q/2⌉m − s · e1
= ⌊q/2⌉m + e · r + e2 − s · e1︸ ︷︷ ︸

small

m ∈ R2 = Z2[x ]/ <xℓ + 1>: more bandwidth.

0

q/4

q/2

3q/4
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Homomorphic addition

LWE ciphertexts can be added

with a small increase in the noise

⟨c1, s⟩ = e1 +m1 · (q + 1)/2 (mod q)

⟨c2, s⟩ = e2 +m2 · (q + 1)/2 (mod q)

⟨c1 + c2, s⟩ = e1 + e2 + (m1 +m2) · (q + 1)/2 (mod q)
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Homomorphic multiplication

Homomorphic multiplication of two ciphertexts is more
complex, with 3 steps:

1) Tensor product

We obtain a ciphertext in Zn2

q , under a new key s× s.

2) Binary decomposition

We obtain a binary ciphertext in {0, 1}n
2·nq , under a new key

s′ = PowerOfTwo(s× s), with nq = ⌈log2 q⌉
3) Key switching

We switch the key from s′ back to the original key s.
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Tensor product

LWE ciphertexts can be multiplied by tensor product.

2⟨c1, s⟩ · ⟨c2, s⟩ = 2

(
n∑

i=1

c1,i si

)(
n∑

i=1

c2,i si

)
= 2(e1 + (q + 1)/2 ·m1) · (e2 + (q + 1)/2 ·m2)

This gives

n∑
i=1

n∑
j=1

2c1,ic2,j · si sj = e +m1m2 · (q + 1)/2 (mod q)

for a new eroor e = 2e1e2 +m1e2 +m2e1
Therefore c′ = (2c1,i · c2,j)i ,j ∈ Zn2

q is a new LWE ciphertext

for the secret-key s′ = (si · sj)i,j ∈ Zn2

q

⟨c′, s′⟩ = e +m1m2 · (q + 1)/2 (mod q)

The bitsize of the noise has roughly doubled.
We get a ciphertext with n2 components instead of n.
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Binary decomposition

We want to have a ciphertext with binary components only.

We use binary decomposition. For any 0 ≤ a, b < q, we have,
using nq = ⌈log2 q⌉:

a · b =

nq−1∑
i=0

ai · 2ib (mod q)

= ⟨BitDecomp(a),PowerOf2(b)⟩
BitDecomp(a) = (a0, . . . , anq−1) and
PowerOf2(b) = (b, 21b, . . . , 2nq−1b).
We extend BitDecomp and PowerOf2 to vectors, by
concatenation

New binary ciphertext from c ∈ Zm
q and s ∈ Zm

q

Let c′ = BitDecomp(c), and s′ = PowerOf2(s)

⟨c′, s′⟩ = ⟨BitDecomp(c),PowerOf2(s)⟩ = ⟨c, s⟩

The new binary ciphertext c′ encrypts the same message under
the new secret-key s′.
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Key switching

How to switch keys ?
Start with a binary ciphertext c ∈ {0, 1}m under key s ∈ Zm

q .

We write u = ⟨c, s⟩ =
m∑
i=1

ci · si (mod q)

Let s′ ∈ Zn
q be another key.

We consider LWE pseudo-encryptions ti of each si under the
new key s′, with ⟨ti , s′⟩ = fi + si (mod q) for small errors fi .

Generating the new ciphertext under s′

We can write:

u =
m∑
i=1

ci (⟨ti , s′⟩ − fi ) =

〈
m∑
i=1

citi , s
′

〉
−

m∑
i=1

ci · fi (mod q)

We can define a new ciphertext c′ =
m∑
i=1

citi (mod q) and we

get for a small error f :

⟨c′, s′⟩ = ⟨c, s⟩+ f (mod q)

⇒ the two ciphertexts encrypt the same message
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Summary of homomorphic multiplication

Homomorphic multiplication of two ciphertexts has 3 steps:
1) Tensor product

We obtain a ciphertext in Zn2

q , under a new key s× s.

2) Binary decomposition

We obtain a binary ciphertext in {0, 1}n
2·nq , under a new key

s′ = PowerOfTwo(s× s), with nq = ⌈log2 q⌉
3) Key switching

We switch the key from s′ back to the original key s.
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Conclusion

First generation of fully homomorphic encryption

The DGHV scheme
Overview of bootstrapping

LWE-based encryption

Ciphertext multiplication: relinearization

Next lecture

Bootstrapping explained
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