# Introduction to Fully Homomorphic Encryption Part 1: basic techniques 

Jean-Sébastien Coron

University of Luxembourg

## Overview

- What is Fully Homomorphic Encryption (FHE) ?
- Basic properties
- Cloud computing on encrypted data: the server should process the data without learning the data.

- 4 generations of FHE:
- 1 st gen: [Genno1, [DGHV10]: bootstrapping, slow
- 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear construction (modulus switching)
- 3rd gen: [GSW13]: no modulus
switching, slow noise growth
- 4th gen: [CKKS17]: approximate
computation


## Overview

- What is Fully Homomorphic Encryption (FHE) ?
- Basic properties
- Cloud computing on encrypted data: the server should process the data without learning the data.

- 4 generations of FHE:
- 1st gen: [Gen09], [DGHV10]: bootstrapping, slow
- 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear construction (modulus switching).
- 3rd gen: [GSW13]: no modulus switching, slow noise growth
- 4th gen: [CKKS17]: approximate computation


## Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
- Normally, this is not possible.

$$
\begin{array}{ll}
\mathrm{AES}_{K}\left(m_{1}\right) & =0 \times 3 \mathrm{c} 7317 \mathrm{c} 6 \mathrm{bc} 5634 \mathrm{a} 4 \mathrm{ad} 8479 \mathrm{c} 64714 \mathrm{f} 4 \mathrm{f} 8 \\
\mathrm{AES}_{K}\left(m_{2}\right) & =0 \mathrm{x} 7619884 \mathrm{e} 1961 \mathrm{~b} 051 \mathrm{be} 1 \mathrm{aa} 407 \mathrm{da} 6 \mathrm{cac} 2 \mathrm{c} \\
\mathrm{AES}_{K}\left(m_{1} \oplus m_{2}\right) & =?
\end{array}
$$

- For some cryptosystems with algebraic structure, this is possible. For example RSA



## Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
- Normally, this is not possible.

$$
\begin{array}{ll}
\mathrm{AES}_{K}\left(m_{1}\right) & =0 \mathrm{x} 3 \mathrm{c} 7317 \mathrm{c} 6 \mathrm{bc} 5634 \mathrm{a} 4 \mathrm{ad} 8479 \mathrm{c} 64714 \mathrm{f} 4 \mathrm{f} 8 \\
\mathrm{AES}_{K}\left(m_{2}\right) & =0 \mathrm{x} 7619884 \mathrm{e} 1961 \mathrm{~b} 051 \mathrm{be} 1 \mathrm{aa} 407 \mathrm{da} 6 \mathrm{cac} 2 \mathrm{c} \\
\mathrm{AES}_{K}\left(m_{1} \oplus m_{2}\right) & =?
\end{array}
$$

- For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

## Homomorphic Encryption with RSA

- Multiplicative property of RSA.

$$
\begin{aligned}
& c_{1}=m_{1}{ }^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c=c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

- Homomorphic encryption: given $c_{1}$ and $c_{2}$, we can compute the ciphertext $c$ for $m_{1} \cdot m_{2} \bmod N$
- using only the public-key
- without knowing the plaintexts $m_{1}$ and $m_{2}$.


## Homomorphism of RSA

- RSA homomorphism: decryption function $\delta(x)=x^{d} \bmod N$

$$
\delta\left(c_{1} \times c_{2}\right)=\delta\left(c_{1}\right) \times \delta\left(c_{2}\right) \quad(\bmod N)
$$

Ciphertexts

Plaintexts

$\mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z} \xrightarrow{\times} \mathbb{Z} / N \mathbb{Z}$

## Paillier Cryptosystem

- Additively homomorphic: Paillier cryptosystem [P99]

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

Ciphertexts

$$
\begin{gathered}
\mathbb{Z} / N^{2} \mathbb{Z} \times \mathbb{Z} / N^{2} \mathbb{Z} \longrightarrow \times \mathbb{Z} / N^{2} \mathbb{Z} \\
\downarrow \downarrow^{\infty} \delta
\end{gathered}
$$

Plaintexts

## Application of Paillier Cryptosystem

- Additively homomorphic: Paillier cryptosystem

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

- Application: e-voting.
- Voter $i$ encrypts his vote $m_{i} \in\{0,1\}$ into:

$$
c_{i}=g^{m_{i}} \cdot z_{i}^{N} \bmod N^{2}
$$

- Votes can be aggregated using only the public-key:

$$
c=\prod_{i} c_{i}=g^{\sum_{i} m_{i}} \cdot z \bmod N^{2}
$$

- $c$ is eventually decrypted to recover

$$
m=\sum_{i} m_{i}
$$

- Multiplicatively homomorphic: RSA.

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

- Additively homomorphic: Paillier

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

- Fully homomorphic: homomorphic for both addition and multiplication
- Open problem until Gentry's breakthrough in 2009.
- We restrict ourselves to public-key encryption of a single bit:
- $0 \xrightarrow{E_{\rho k}}$ 203ef6124 $\ldots 23$ ab87 $1_{16}, 1 \xrightarrow{E_{p k}}$ b327653c1 $\ldots$ db3265 ${ }_{16}$
- Encryption must be probabilistic.
- Fully homomorphic property
- Given $E_{p k}(x)$ and $E_{p k}(y)$, one can compute $E_{p k}(x \oplus y)$ and $E_{p k}(x \cdot y)$ without knowing the private-key.
- We restrict ourselves to public-key encryption of a single bit:
- $0 \xrightarrow{E_{p k}} 203$ ef6124 $\ldots 23 \mathrm{ab} 87_{16}, 1 \xrightarrow{E_{\rho k}}$ b327653c1 $\ldots$ db3265 ${ }_{16}$
- Encryption must be probabilistic.
- Fully homomorphic property
- Given $E_{p k}(x)$ and $E_{p k}(y)$, one can compute $E_{p k}(x \oplus y)$ and $E_{p k}(x \cdot y)$ without knowing the private-key.


Plaintext world


Ciphertext world

- Universality
- We can evaluate homomorphically any boolean computable function $f:\{0,1\}^{n} \rightarrow\{0,1\}$


Plaintext world
$E_{p k}\left(x_{1}\right) \quad E_{p k}\left(x_{2}\right) \quad E_{p k}\left(x_{3}\right) \quad E_{p k}\left(x_{4}\right) \quad E_{p k}\left(x_{5}\right)$

$E_{p k}\left(f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)\right)$
Ciphertext world

## Outsourcing computation (1)



- Alice wants to outsource the computation of $f(x)$
- but she wants to keep $x$ private
- She encrypts the bits $x_{i}$ of $x$ into $c_{i}=E_{p k}\left(x_{i}\right)$ for her pk
- and she sends the $c_{i}$ 's to the server


## Outsourcing computation (1)



$$
c_{i}=E_{p k}\left(x_{i}\right)
$$

- Alice wants to outsource the computation of $f(x)$
- but she wants to keep $x$ private
- She encrypts the bits $x_{i}$ of $x$ into $c_{i}=E_{p k}\left(x_{i}\right)$ for her $p k$
- and she sends the $c_{i}$ 's to the server


## Outsourcing computation (2)



$$
c_{i}=E_{p k}\left(x_{i}\right)
$$

- The server homomorphically evaluates $f(x)$
- by writing $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ as a boolean circuit.
- Given $E_{p k}\left(x_{i}\right)$, the server eventually obtains $c=E_{p k}(f(x))$
- Finally Alice decrypts $c$ into $y=f(x)$
- The server does not learn $x$.
- Only Alice can decrypt to recover $f(x)$.
- Alice could also keep $f$ private.


## Outsourcing computation (2)



- The server homomorphically evaluates $f(x)$
- by writing $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ as a boolean circuit.
- Given $E_{p k}\left(x_{i}\right)$, the server eventually obtains $c=E_{p k}(f(x))$
- The server does not learn $x$.
- Only Alice can decrypt to recover $f(x)$.
- Alice could also keep $f$ private.


## Outsourcing computation (2)



$$
\begin{gathered}
c_{i}=E_{p k}\left(x_{i}\right) \\
c=E_{p k}(f(x))
\end{gathered}
$$

$$
y=D_{s k}(c)=f(x)
$$

- The server homomorphically evaluates $f(x)$
- by writing $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ as a boolean circuit.
- Given $E_{p k}\left(x_{i}\right)$, the server eventually obtains $c=E_{p k}(f(x))$
- Finally Alice decrypts $c$ into $y=f(x)$
- The server does not learn $x$.
- Only Alice can decrypt to recover $f(x)$.
- Alice could also keep $f$ private.
- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
- Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.



## Fully Homomorphic Encryption: first generation

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
- Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
- Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
- Public-key compression [CNT12]
- Batch and homomorphic evaluation of AES [CCKLLTY13].

The DGHV Scheme

- Ciphertext for $m \in\{0,1\}$ :

$$
c=q \cdot p+2 r+m
$$

where $p$ is the secret-key, $q$ and $r$ are randoms.

- Decryption:

$$
(c \bmod p) \bmod 2=m
$$

- Parameters:



## Homomorphic Properties of DGHV

- Addition:

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1}+c_{2}=q^{\prime} \cdot p+2 r^{\prime}+m_{1}+m_{2}
$$

- $c_{1}+c_{2}$ is an encryption of $m_{1}+m_{2} \bmod 2=m_{1} \oplus m_{2}$


## - Multiplication:


with

$$
r^{\prime \prime}=2 r_{1} r_{2}+r_{1} m_{2}+r_{2} m_{1}
$$

- $c_{1} \cdot c_{2}$ is an encryption of $m_{1} \cdot m_{2}$
- Noise becomes twice larger.


## Homomorphic Properties of DGHV

- Addition:

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1}+c_{2}=q^{\prime} \cdot p+2 r^{\prime}+m_{1}+m_{2}
$$

- $c_{1}+c_{2}$ is an encryption of $m_{1}+m_{2} \bmod 2=m_{1} \oplus m_{2}$
- Multiplication:

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=q^{\prime \prime} \cdot p+2 r^{\prime \prime}+m_{1} \cdot m_{2}
$$

with

$$
r^{\prime \prime}=2 r_{1} r_{2}+r_{1} m_{2}+r_{2} m_{1}
$$

- $c_{1} \cdot c_{2}$ is an encryption of $m_{1} \cdot m_{2}$
- Noise becomes twice larger.


## Homomorphism of DGHV

- DGHV ciphertext:

$$
c=q \cdot p+2 r+m
$$

- Homomorphism: $\delta(x)=(x \bmod p) \bmod 2$
- only works if noise $r$ is smaller than $p$

Ciphertexts

Plaintexts

$$
\begin{aligned}
& \mathbb{Z} \times \mathbb{Z} \xrightarrow{+, \times} \mathbb{Z} \\
& \downarrow \delta, \downarrow \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \xrightarrow{\oplus, \times} \mathbb{Z}_{2}
\end{aligned}
$$

## Somewhat homomorphic scheme

- The number of multiplications is limited.
- Noise grows with the number of multiplications.
- Noise must remain $<p$ for correct decryption.



## Public-key Encryption with DGHV

- For now, encryption requires the knowledge of the secret $p$ :

$$
c=q \cdot p+2 r+m
$$

- We can actually turn it into a public-key encryption scheme - Using the additively homomorphic property
- Public-key: a set of $\tau$ encryptions of O's.

$$
x_{i}=q_{i} \cdot p+2 r_{i}
$$

- Public-key encryption:

for random $\varepsilon_{i} \in\{0,1\}$


## Public-key Encryption with DGHV

- For now, encryption requires the knowledge of the secret $p$ :

$$
c=q \cdot p+2 r+m
$$

- We can actually turn it into a public-key encryption scheme - Using the additively homomorphic property
- Public-key: a set of $\tau$ encryptions of 0's.

$$
x_{i}=q_{i} \cdot p+2 r_{i}
$$

- Public-key encryption:

$$
c=m+2 r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot x_{i}
$$

for random $\varepsilon_{i} \in\{0,1\}$.

## Bounding ciphertext size

- DGHV multiplication over $\mathbb{Z}$

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=q^{\prime} \cdot p+2 r^{\prime}+m_{1} \cdot m_{2}
$$

- Problem: ciphertext size has doubled.
- Constant ciphertext size
- We publish an encryption of 0 without noise $x_{0}=q_{0} \cdot p$
- We reduce the product modulo $x_{0}$

$$
\begin{aligned}
c_{3} & =c_{1} \cdot c_{2} \bmod x_{0} \\
& =q^{\prime \prime} \cdot p+2 r^{\prime}+m_{1} \cdot m_{2}
\end{aligned}
$$

- Ciphertext size remains constant


## Public-key size



- Public-key size:
- $\tau \cdot \gamma=2 \cdot 10^{11}$ bits $=25 \mathrm{~GB}$ !


## DGHV Ciphertext Compression

- Ciphertext: $c=q \cdot p+2 r+m$

$$
\begin{aligned}
& \gamma \simeq 2 \cdot 10^{7} \text { bits } \\
& \longleftarrow p: \eta \simeq 2700 \text { bits }
\end{aligned}
$$

- Compute a pseudo-random $\chi=f($ seed $)$ of $\gamma$ bits.
$\square$


## DGHV Ciphertext Compression

- Ciphertext: $c=q \cdot p+2 r+m$
- Compute a pseudo-random $\chi=f($ seed $)$ of $\gamma$ bits.

$$
\begin{aligned}
& \chi=\square \| \square \\
& \quad \delta=\chi-2 r-m \bmod p \\
& c=\chi-\delta \square / / \square \\
& \hline
\end{aligned}
$$

- Only store seed and the small
correction $\delta$
- Storage: $\simeq 2700$ bits instead of
$2 \cdot 10^{7}$ bits !


## DGHV Ciphertext Compression

- Ciphertext: $c=q \cdot p+2 r+m$
- Compute a pseudo-random $\chi=f($ seed $)$ of $\gamma$ bits.

$$
\begin{aligned}
& \chi=\square / / \square \\
& \quad \delta=\chi-2 r-m \bmod p \\
& c=\chi-\delta \square / / \square \\
& \hline
\end{aligned}
$$

- Only store seed and the small correction $\delta$.
$2 \cdot 10^{7}$ bits !


## DGHV Ciphertext Compression

- Ciphertext: $c=q \cdot p+2 r+m$
- Compute a pseudo-random $\chi=f($ seed $)$ of $\gamma$ bits.

$$
\begin{gathered}
\chi=\square \| \square \\
\quad \delta=\chi-2 r-m \bmod p \\
c=\chi-\delta \square / \square \square \\
\hline
\end{gathered}
$$

- Only store seed and the small correction $\delta$.
- Storage: $\simeq 2700$ bits instead of $2 \cdot 10^{7}$ bits !


## Compressed Public Key



Old $p k$ : 25 GB


New pk: 3.4 MB!

## Semantic security of DGHV

- Semantic security [GM82] for $m \in\{0,1\}$ :
- Knowing $p k$, the distributions $E_{p k}(0)$ and $E_{p k}(1)$ are computationally hard to distinguish.
- The DGHV scheme is semantically secure, under the approximate-gcd assumption.
- Approximate-gcd problem: given a set of $x_{i}=q_{i} \cdot p+r_{i}$, recover $p$.
- This remains the case with the compressed public-key, under the random oracle model.


## The approximate GCD assumption

- Efficient DGHV variant: secure under the Partial Approximate Common Divisor (PACD) assumption.
- Given $x_{0}=p \cdot q_{0}$ and polynomially many $x_{i}=p \cdot q_{i}+r_{i}$, find $p$.
- Brute force attack on the noise
- Given $x_{0}=q_{0} \cdot p$ and $x_{1}=q_{1} \cdot p+r_{1}$ with $\left|r_{1}\right|<2^{\rho}$, guess $r_{1}$ and compute $\operatorname{gcd}\left(x_{0}, x_{1}-r_{1}\right)$ to recover $p$.
- Requires $2^{\rho}$ gcd computation
- Countermeasure: take a sufficiently large $\rho$


## Improved attack against PACD [CN12]

- Given $x_{0}=p \cdot q_{0}$ and many $x_{i}=p \cdot q_{i}+r_{i}$, find $p$.
- Improved attack in $\tilde{\mathcal{O}}\left(2^{\rho / 2}\right)$ [CN12]

$$
\begin{aligned}
p & =\operatorname{gcd}\left(x_{0}, \prod_{i=0}^{2^{\rho}-1}\left(x_{1}-i\right) \bmod x_{0}\right) \\
& =\operatorname{gcd}\left(x_{0}, \prod_{a=0}^{m-1} \prod_{b=0}^{m-1}\left(x_{1}-b-m \cdot a\right) \bmod x_{0}\right), \text { where } m=2^{\rho / 2} \\
& =\operatorname{gcd}\left(x_{0}, \prod_{a=0}^{m-1} f(a) \bmod x_{0}\right) \\
& f(y):=\prod_{b=0}^{m-1}\left(x_{1}-b-m \cdot y\right) \bmod x_{0}
\end{aligned}
$$

- Evaluate the polynomial $f(y)$ at $m$ points in time $\tilde{\mathcal{O}}(m)=\tilde{\mathcal{O}}\left(2^{\rho / 2}\right)$


## Approximate GCD attack

- Consider $t$ integers: $x_{i}=p \cdot q_{i}+r_{i}$ and $x_{0}=p \cdot q_{0}$.
- Consider a vector $\vec{u}$ orthogonal to the $x_{i}$ 's:

$$
\sum_{i=1}^{t} u_{i} \cdot x_{i}=0 \quad \bmod x_{0}
$$

- This gives $\sum_{i=1}^{t} u_{i} \cdot r_{i}=0 \bmod p$.
- If the $u_{i}$ 's are sufficiently small, since the $r_{i}$ 's are small this equality will hold over $\mathbb{Z}$.
- Such vector $\vec{u}$ can be found using LLL.
- By collecting many orthogonal vectors one can recover $\vec{r}$ and eventually the secret key $p$
- Countermeasure
- The size $\gamma$ of the $x_{i}$ 's must be sufficiently large.


## The DGHV scheme (simplified)

- Key generation:
- Generate a set of $\tau$ public integers:

$$
x_{i}=p \cdot q_{i}+r_{i}, \quad 1 \leq i \leq \tau
$$

and $x_{0}=p \cdot q_{0}$, where $p$ is a secret prime.

- Size of $p$ is $\eta$. Size of $x_{i}$ is $\gamma$. Size of $r_{i}$ is $\rho$.
- Encryption of a message $m \in\{0,1\}$
- Generate random $\varepsilon_{i} \leftarrow\{0,1\}$ and a random integer $r$ in $\left(-2^{\rho^{\prime}}, 2^{\rho^{\prime}}\right)$, and output the ciphertext:

- Decryption:



## The DGHV scheme (simplified)

- Key generation:
- Generate a set of $\tau$ public integers:

$$
x_{i}=p \cdot q_{i}+r_{i}, \quad 1 \leq i \leq \tau
$$

and $x_{0}=p \cdot q_{0}$, where $p$ is a secret prime.

- Size of $p$ is $\eta$. Size of $x_{i}$ is $\gamma$. Size of $r_{i}$ is $\rho$.
- Encryption of a message $m \in\{0,1\}$ :
- Generate random $\varepsilon_{i} \leftarrow\{0,1\}$ and a random integer $r$ in $\left(-2^{\rho^{\prime}}, 2^{\rho^{\prime}}\right)$, and output the ciphertext:

$$
c=m+2 r+2 \sum_{i=1}^{\tau} \varepsilon_{i} \cdot x_{i} \bmod x_{0}
$$

- Decryption:



## The DGHV scheme (simplified)

- Key generation:
- Generate a set of $\tau$ public integers:

$$
x_{i}=p \cdot q_{i}+r_{i}, \quad 1 \leq i \leq \tau
$$

and $x_{0}=p \cdot q_{0}$, where $p$ is a secret prime.

- Size of $p$ is $\eta$. Size of $x_{i}$ is $\gamma$. Size of $r_{i}$ is $\rho$.
- Encryption of a message $m \in\{0,1\}$ :
- Generate random $\varepsilon_{i} \leftarrow\{0,1\}$ and a random integer $r$ in $\left(-2^{\rho^{\prime}}, 2^{\rho^{\prime}}\right)$, and output the ciphertext:

$$
c=m+2 r+2 \sum_{i=1}^{\tau} \varepsilon_{i} \cdot x_{i} \bmod x_{0}
$$

- Decryption:

$$
c \equiv m+2 r+2 \sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i} \quad(\bmod p)
$$

- Output $m \leftarrow(c \bmod p) \bmod 2$


## The DGHV scheme (contd.)

- Noise in ciphertext:
- $c=m+2 \cdot r^{\prime} \bmod p$ where $r^{\prime}=r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i}$
- $r^{\prime}$ is the noise in the ciphertext.
- It must remain $<p$ for correct decryption.
- Homomorphic addition:
- $c_{1}+c_{2}=m_{1}+m_{2}+2\left(r_{1}^{\prime}+r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime}+r_{2}^{\prime}$ still less than $p$.
- Homomorphic multiplication: $c_{3} \leftarrow c_{1} \cdot c_{2} \bmod x_{0}$
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(m_{1} \cdot r_{2}^{\prime}+m_{2} \cdot r_{1}^{\prime}+2 r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime} \cdot r_{2}^{\prime}$ remains less than $p$.
- Somewhat homomorphic scheme
- Noise grows with every homomorphic addition or multiplication.
- This limits the degree of the polynomial that can be applied on ciphertexts.


## The DGHV scheme (contd.)

- Noise in ciphertext:
- $c=m+2 \cdot r^{\prime} \bmod p$ where $r^{\prime}=r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i}$
- $r^{\prime}$ is the noise in the ciphertext.
- It must remain $<p$ for correct decryption.
- Homomorphic addition: $c_{3} \leftarrow c_{1}+c_{2} \bmod x_{0}$
- $c_{1}+c_{2}=m_{1}+m_{2}+2\left(r_{1}^{\prime}+r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime}+r_{2}^{\prime}$ still less than $p$.
- Homomorphic multiplication: $c_{3} \leftarrow c_{1} \cdot c_{2} \bmod x_{0}$
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(m_{1} \cdot r_{2}^{\prime}+m_{2} \cdot r_{1}^{\prime}+2 r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime} \cdot r_{2}^{\prime}$ remains less than $p$.
- Somewhat homomorphic scheme
- Noise grows with every homomorphic
addition or multiplication.
- This limits the degree of the polynomial
that can be applied on ciphertexts.


## The DGHV scheme (contd.)

- Noise in ciphertext:
- $c=m+2 \cdot r^{\prime} \bmod p$ where $r^{\prime}=r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i}$
- $r^{\prime}$ is the noise in the ciphertext.
- It must remain $<p$ for correct decryption.
- Homomorphic addition: $c_{3} \leftarrow c_{1}+c_{2} \bmod x_{0}$
- $c_{1}+c_{2}=m_{1}+m_{2}+2\left(r_{1}^{\prime}+r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime}+r_{2}^{\prime}$ still less than $p$.
- Homomorphic multiplication: $c_{3} \leftarrow c_{1} \cdot c_{2} \bmod x_{0}$
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(m_{1} \cdot r_{2}^{\prime}+m_{2} \cdot r_{1}^{\prime}+2 r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime} \cdot r_{2}^{\prime}$ remains less than $p$.
- Somewhat homomorphic scheme
- Noise grows with every homomorphic
addition or multiplication.
- This limits the degree of the polynomial
that can be applied on ciphertexts.


## The DGHV scheme (contd.)

- Noise in ciphertext:
- $c=m+2 \cdot r^{\prime} \bmod p$ where $r^{\prime}=r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot r_{i}$
- $r^{\prime}$ is the noise in the ciphertext.
- It must remain $<p$ for correct decryption.
- Homomorphic addition: $c_{3} \leftarrow c_{1}+c_{2} \bmod x_{0}$
- $c_{1}+c_{2}=m_{1}+m_{2}+2\left(r_{1}^{\prime}+r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime}+r_{2}^{\prime}$ still less than $p$.
- Homomorphic multiplication: $c_{3} \leftarrow c_{1} \cdot c_{2} \bmod x_{0}$
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(m_{1} \cdot r_{2}^{\prime}+m_{2} \cdot r_{1}^{\prime}+2 r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \bmod p$
- Works if noise $r_{1}^{\prime} \cdot r_{2}^{\prime}$ remains less than $p$.
- Somewhat homomorphic scheme
- Noise grows with every homomorphic addition or multiplication.
- This limits the degree of the polynomial that can be applied on ciphertexts.


## Gentry's technique to get fully homomorphic encryption

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
- Only a polynomial $f$ of small degree can computed homomorphically, for $\mathcal{F}=\left\{f\left(b_{1}, \ldots, b_{t}\right): \operatorname{deg} f \leq d\right\}$
- $V_{p k}\left(f, E_{p k}\left(b_{1}\right), \ldots, E_{p k}\left(b_{t}\right)\right) \rightarrow E_{p k}\left(f\left(b_{1}, \ldots, b_{t}\right)\right)$

Ciphertexts

$$
\mathcal{C}^{t} \xrightarrow{V_{p k}(f, \cdots)} \mathcal{C}
$$



Plaintexts


## Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
- Evaluate the decryption polynomial not on the bits of the ciphertext $c$ and the secret key $s k$, but homomorphically on the encryption of those bits.



## Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
- Instead of recovering the bit plaintext $m$, one gets an encryption of this bit plaintext, i.e. yet another ciphertext for the same plaintext.

- will be explained in next lecture.


## Ciphertext refresh

- Refreshed ciphertext:
- If the degree of the decryption polynomial $D(\cdot, \cdot)$ is small enough, the resulting noise in the new ciphertext can be smaller than in the original ciphertext.



## Fully homomorphic encryption

- Fully homomorphic encryption
- Using this "ciphertext refresh" procedure, the number of homomorphic operations becomes unlimited
- We get a fully homomorphic encryption scheme.



## Four generations of FHE

- First generation: bootstrapping, slow
- Breakthrough scheme of Gentry [G09], based on ideal lattices.
- FHE over the integers: [DGHV10]
- Second generation: [BV11], [BGV11]
- More efficient, (R)LWE based. Relinearization, depth-linear construction with modulus switching.
- Third generation [GSW13]
- No modulus switching, slow noise growth
- Improved bootstrapping: [BV14], [AP14]
- Fourth gen: [CKKS17]
- Approximate floating point arithmetic


## Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
- Homomorphism: $\delta: \mathbb{Z}_{q}[\vec{x}] \rightarrow \mathbb{Z}_{q}[x]$ given by evaluation at secret $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$

Ciphertexts

$$
\mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, x} \mathbb{Z}_{q}[\vec{x}]
$$



Plaintexts

$$
\mathbb{Z}_{q} \times \mathbb{Z}_{q} \xrightarrow{+, \times} \mathbb{Z}_{q}^{\downarrow}
$$

- One must add some noise, otherwise broken by linear algebra. - $f(\vec{s})=2 e+m \bmod q$, for some small noise $e \in \mathbb{Z}_{q}$
- LWE assumption [R05]
- Linear polynomials $f_{i}(\vec{x})$ with
$\left|f_{i}(\vec{s}) \bmod q\right| \ll q$ are comp. indist.
from random $f_{i}(\vec{x})$ modulo $q$.


## Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
- Homomorphism: $\delta: \mathbb{Z}_{q}[\vec{x}] \rightarrow \mathbb{Z}_{q}[x]$ given by evaluation at secret $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$

Ciphertexts

$$
\mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, x} \mathbb{Z}_{q}[\vec{x}]
$$



Plaintexts

$$
\mathbb{Z}_{q} \times \mathbb{Z}_{q} \xrightarrow{+, \times} \mathbb{Z}_{q}^{\downarrow}
$$

- One must add some noise, otherwise broken by linear algebra.
- $f(\vec{s})=2 e+m \bmod q$, for some small noise $e \in \mathbb{Z}_{q}$
- Linear polynomials $f_{i}(\vec{x})$ with
$\left|f_{i}(\vec{s}) \bmod q\right| \ll q$ are comp. indist.
from random $f_{i}(\vec{x})$ modulo $q$.


## Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
- Homomorphism: $\delta: \mathbb{Z}_{q}[\bar{x}] \rightarrow \mathbb{Z}_{q}[x]$ given by evaluation at secret $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$

Ciphertexts

$$
\begin{aligned}
& \mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, x} \mathbb{Z}_{q}[\vec{x}] \\
& \mathbb{Z}_{q} \times \mathbb{Z}_{q} \xrightarrow{+, \times} \mathbb{Z}_{q}
\end{aligned}
$$

Plaintexts

- One must add some noise, otherwise broken by linear algebra.
- $f(\vec{s})=2 e+m \bmod q$, for some small noise $e \in \mathbb{Z}_{q}$
- LWE assumption [R05]
- Linear polynomials $f_{i}(\vec{x})$ with $\left|f_{i}(\vec{s}) \bmod q\right| \ll q$ are comp. indist. from random $f_{i}(\vec{x})$ modulo $q$.


## LWE-based encryption [R05]

- Key generation
- Secret-key: $\mathbf{s} \in\left(\mathbb{Z}_{q}\right)^{n}$
- Encryption of $m \in\{0,1\}$
- A vector $\mathbf{c} \in \mathbb{F}_{q}$ such that

$$
\langle\mathbf{c}, \mathbf{s}\rangle=2 e+m \quad(\bmod q)
$$

- for a small error $e$.


$$
\begin{aligned}
& =\square \\
& 2 e+m
\end{aligned}
$$

- Distribution of the error e

S


- One can take the centered binomial distribution $\chi$ with parameter $\kappa$.
- Let $e=h(u)-h(v)$ where $u, v \leftarrow\{0,1\}^{\kappa}$, where $h$ is the Hamming weight function.
- Decryption
- Compute $m=(\mathbf{c} \cdot \mathbf{s} \bmod q) \bmod 2$
- Decryption works if $|e|<q / 4$


## LWE-based encryption [R05]

- Key generation
- Secret-key: $\mathbf{s} \in\left(\mathbb{Z}_{q}\right)^{n}$
- Encryption of $m \in\{0,1\}$
- A vector $\mathbf{c} \in \mathbb{F}_{q}$ such that

$$
\langle\mathbf{c}, \mathbf{s}\rangle=2 e+m \quad(\bmod q)
$$

- for a small error $e$.

- Distribution of the error $e$
- One can take the centered binomial distribution $\chi$ with parameter $\kappa$.
- Let $e=h(u)-h(v)$ where $u, v \leftarrow\{0,1\}^{\kappa}$, where $h$ is the Hamming weight function.
- Decryption
- Compute $m=(\mathbf{c} \cdot \mathbf{s} \bmod q) \bmod 2$
- Decryption works if $|e|<q / 4$


## LWE-based encryption: alternative encoding

- The message $m$ can also be encoded in the MSB.
- Encryption of $m \in\{0,1\}$
- A vector $\mathbf{c} \in \mathbb{F}_{q}$ such that

$$
\langle\mathbf{c}, \mathbf{s}\rangle=e+m \cdot\lfloor q / 2\rfloor \quad(\bmod q)
$$



C


S

- Decryption
- Compute $m=\operatorname{th}(\langle\mathbf{c}, \mathbf{s}\rangle \bmod q)$
- where $\operatorname{th}(x)=1$ if $x \in(q / 4,3 q / 4)$, and 0 otherwise.



## LWE-based public-key encryption

- Key generation
- Secret-key: $\mathbf{s} \in\left(\mathbb{Z}_{q}\right)^{n}$, with $s_{1}=1$.
- Public-key: A such that $\mathbf{A} \cdot \mathbf{s}=\mathbf{e}$ for small $\mathbf{e}$ - Every row of $\mathbf{A}$ is an LWE encryption of 0 .
- Encryption of $m \in\{0,1\}$

$$
\mathbf{c}=\mathbf{u} \cdot \mathbf{A}+(m \cdot\lfloor q / 2\rceil, 0, \ldots, 0)
$$

- for a small u



## RLWE-based schemes

- RLWE-based scheme
- We replace $\mathbb{Z}_{q}$ by the polynomial ring $R_{q}=\mathbb{Z}_{q}[x] /<x^{\ell}+1>$, where $\ell$ is a power of 2 .
- Addition and multiplication of polynomials are performed modulo $x^{\ell}+1$ and prime $q$.
- We can take $m \in R_{2}=\mathbb{Z}_{2}[x] /\left\langle x^{\ell}+1\right\rangle$ instead of $\{0,1\}$ : more bandwidth.
- Ring Learning with Error (RLWE) assumption
- $t=a \cdot s+e$ for small $s, e \leftarrow R$
- Given $t, a$, it is difficult to recover $s$.


## RLWE-based public-key encryption

- Key generation
- $t=a \cdot s+e$ for random $a \leftarrow R_{q}$ and small $s, e \leftarrow R$.
- Public-key encryption of $m \in R_{2}$
- $c=\left(a \cdot r+e_{1}, t \cdot r+e_{2}+\lfloor q / 2\rceil m\right)$, for small $e_{1}, e_{2}$ and $r$.
- Decryption of $c=(u, v)$
- Compute $m=\operatorname{th}(v-s \cdot u)$

$$
\begin{aligned}
v-s \cdot u & =t \cdot r+e_{2}+\lfloor q / 2\rceil m-s \cdot\left(a \cdot r+e_{1}\right) \\
& =(t-a \cdot s) \cdot r+e_{2}+\lfloor q / 2\rceil m-s \cdot e_{1} \\
& =\lfloor q / 2\rceil m+\underbrace{e \cdot r+e_{2}-s \cdot e_{1}}_{\text {small }}
\end{aligned}
$$

- $m \in R_{2}=\mathbb{Z}_{2}[x] /<x^{\ell}+1>$ : more bandwidth.



## Homomorphic addition

- LWE ciphertexts can be added
- with a small increase in the noise

$$
\begin{aligned}
\left\langle\mathbf{c}_{1}, \mathbf{s}\right\rangle & =e_{1}+m_{1} \cdot(q+1) / 2 \quad(\bmod q) \\
\left\langle\mathbf{c}_{2}, \mathbf{s}\right\rangle & =e_{2}+m_{2} \cdot(q+1) / 2 \quad(\bmod q) \\
\left\langle\mathbf{c}_{1}+\mathbf{c}_{2}, \mathbf{s}\right\rangle & =e_{1}+e_{2}+\left(m_{1}+m_{2}\right) \cdot(q+1) / 2 \quad(\bmod q)
\end{aligned}
$$

## Homomorphic multiplication

- Homomorphic multiplication of two ciphertexts is more complex, with 3 steps:
- 1) Tensor product
- We obtain a ciphertext in $\mathbb{Z}_{q}^{n^{2}}$, under a new key $\mathbf{s} \times \mathbf{s}$.
- 2) Binary decomposition
- We obtain a binary ciphertext in $\{0,1\}^{n^{2} \cdot n_{q}}$, under a new key $\mathbf{s}^{\prime}=$ PowerOfTwo(s $\times \mathbf{s}$ ), with $n_{q}=\left\lceil\log _{2} q\right\rceil$
- 3) Key switching
- We switch the key from $\mathbf{s}^{\prime}$ back to the original key $\mathbf{s}$.
- LWE ciphertexts can be multiplied by tensor product.

$$
\begin{aligned}
2\left\langle\mathbf{c}_{1}, \mathbf{s}\right\rangle \cdot\left\langle\mathbf{c}_{2}, \mathbf{s}\right\rangle & =2\left(\sum_{i=1}^{n} c_{1, i} s_{i}\right)\left(\sum_{i=1}^{n} c_{2, i} s_{i}\right) \\
& =2\left(e_{1}+(q+1) / 2 \cdot m_{1}\right) \cdot\left(e_{2}+(q+1) / 2 \cdot m_{2}\right)
\end{aligned}
$$

- This gives

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} 2 c_{1, i} c_{2, j} \cdot s_{i} s_{j}=e+m_{1} m_{2} \cdot(q+1) / 2 \quad(\bmod q)
$$

- for a new eroor $e=2 e_{1} e_{2}+m_{1} e_{2}+m_{2} e_{1}$
- Therefore $\mathbf{c}^{\prime}=\left(2 c_{1, i} \cdot c_{2, j}\right)_{i, j} \in \mathbb{Z}_{q}^{n^{2}}$ is a new LWE ciphertext
- for the secret-key $\mathbf{s}^{\prime}=\left(s_{i} \cdot s_{j}\right)_{i, j} \in \mathbb{Z}_{q}^{n^{2}}$

$$
\left\langle\mathbf{c}^{\prime}, \mathbf{s}^{\prime}\right\rangle=e+m_{1} m_{2} \cdot(q+1) / 2 \quad(\bmod q)
$$

- The bitsize of the noise has roughly doubled.
- We get a ciphertext with $n^{2}$ components instead of $n$.
- We want to have a ciphertext with binary components only.
- We use binary decomposition. For any $0 \leq a, b<q$, we have, using $n_{q}=\left\lceil\log _{2} q\right\rceil$ :

$$
\begin{aligned}
a \cdot b & =\sum_{i=0}^{n_{q}-1} a_{i} \cdot 2^{i} b \quad(\bmod q) \\
& =\langle\operatorname{BitDecomp}(a), \operatorname{PowerOf} 2(b)\rangle
\end{aligned}
$$

- $\operatorname{BitDecomp}(a)=\left(a_{0}, \ldots, a_{n_{q}-1}\right)$ and PowerOf2 $(b)=\left(b, 2^{1} b, \ldots, 2^{n_{q}-1} b\right)$.
- We extend BitDecomp and PowerOf2 to vectors, by concatenation
- New binary ciphertext from $\mathbf{c} \in \mathbb{Z}_{q}^{m}$ and $\mathbf{s} \in \mathbb{Z}_{q}^{m}$
- Let $\mathbf{c}^{\prime}=\operatorname{BitDecomp}(\mathbf{c})$, and $\mathbf{s}^{\prime}=$ PowerOf2(s)

$$
\left\langle\mathbf{c}^{\prime}, \mathbf{s}^{\prime}\right\rangle=\langle\text { BitDecomp }(\mathbf{c}), \text { PowerOf2 }(\mathbf{s})\rangle=\langle\mathbf{c}, \mathbf{s}\rangle
$$

- The new binary ciphertext $\mathbf{c}^{\prime}$ encrypts the same message under the new secret-key $\mathbf{s}^{\prime}$.


## Key switching

- How to switch keys ?
- Start with a binary ciphertext $\mathbf{c} \in\{0,1\}^{m}$ under key $\mathbf{s} \in \mathbb{Z}_{q}^{m}$.
- We write $u=\langle\mathbf{c}, \mathbf{s}\rangle=\sum_{i=1}^{m} c_{i} \cdot s_{i}(\bmod q)$
- Let $\mathbf{s}^{\prime} \in \mathbb{Z}_{q}^{n}$ be another key.
- We consider LWE pseudo-encryptions $\mathbf{t}_{i}$ of each $s_{i}$ under the new key $\mathbf{s}^{\prime}$, with $\left\langle\mathbf{t}_{i}, \mathbf{s}^{\prime}\right\rangle=f_{i}+s_{i}(\bmod q)$ for small errors $f_{i}$.
- Generating the new ciphertext under $\mathbf{s}^{\prime}$
- We can write:

$$
u=\sum_{i=1}^{m} c_{i}\left(\left\langle\mathbf{t}_{i}, \mathbf{s}^{\prime}\right\rangle-f_{i}\right)=\left\langle\sum_{i=1}^{m} c_{i} \mathbf{t}_{i}, \mathbf{s}^{\prime}\right\rangle-\sum_{i=1}^{m} c_{i} \cdot f_{i} \quad(\bmod q)
$$

- We can define a new ciphertext $\mathbf{c}^{\prime}=\sum_{i=1}^{m} c_{i} \mathbf{t}_{i}(\bmod q)$ and we get for a small error $f$ :

$$
\left\langle\mathbf{c}^{\prime}, \mathbf{s}^{\prime}\right\rangle=\langle\mathbf{c}, \mathbf{s}\rangle+f \quad(\bmod q)
$$

- $\Rightarrow$ the two ciphertexts encrypt the same message


## Summary of homomorphic multiplication

- Homomorphic multiplication of two ciphertexts has 3 steps:
- 1) Tensor product
- We obtain a ciphertext in $\mathbb{Z}_{q}^{n^{2}}$, under a new key $\mathbf{s} \times \mathbf{s}$.
- 2) Binary decomposition
- We obtain a binary ciphertext in $\{0,1\}^{n^{2} \cdot n_{q}}$, under a new key $\mathbf{s}^{\prime}=$ PowerOfTwo(s $\times \mathbf{s}$ ), with $n_{q}=\left\lceil\log _{2} q\right\rceil$
- 3) Key switching
- We switch the key from s' back to the original key s.


## Conclusion

- First generation of fully homomorphic encryption
- The DGHV scheme
- Overview of bootstrapping
- LWE-based encryption
- Ciphertext multiplication: relinearization
- Next lecture
- Bootstrapping explained

References
CN12 Yuanmi Chen, Phong Q. Nguyen. Faster Algorithms for Approximate Common Divisors: Breaking Fully-Homomorphic-Encryption Challenges over the Integers. EUROCRYPT 2012: 502-519
CMNT11 Jean-Sébastien Coron, Avradip Mandal, David Naccache, Mehdi Tibouchi: Fully Homomorphic Encryption over the Integers with Shorter Public Keys. CRYPTO 2011: 487-504
CNT12 Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi. Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers. EUROCRYPT 2012: 446-464
DGHV10 Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan. Fully Homomorphic Encryption over the Integers. EUROCRYPT 2010: 24-43
Gen09 Craig Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009: 169-178
P99 Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. EUROCRYPT 1999: 223-238
R05 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005: 84-93

