Introduction to Fully Homomorphic Encryption

Part 1: basic techniques

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

e What is Fully Homomorphic Encryption (FHE) ?

e Basic properties
e Cloud computing on encrypted data: the server should process
the data without learning the data.

¥ ¢

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

e What is Fully Homomorphic Encryption (FHE) ?
e Basic properties
e Cloud computing on encrypted data: the server should process
the data without learning the data.

¥ ¢

@ 4 generations of FHE:

o 1st gen: [Gen09], [DGHV10]: bootstrapping, slow

o 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).

e 3rd gen: [GSW13]: no modulus
switching, slow noise growth

o 4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption

@ Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

o Normally, this is not possible.

AESk(my) = 0x3c7317c6bcb634a4ad8479c64714£4£8
AESk(m2) 0x7619884e1961b051belaad07dabcac2c
AESK(m1 D m2) = 7

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption

@ Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

o Normally, this is not possible.

AESk(my) = 0x3c7317c6bcb634a4ad8479c64714£4£8
AESk(m2) 0x7619884e1961b051belaad07dabcac2c
AESK(m1 D m2) = 7

@ For some cryptosystems with algebraic structure, this is
possible. For example RSA:
cg = m;® mod N

=c1-c=(my-mp)® mod N
— e
¢ = my,* mod N

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption with RSA

@ Multiplicative property of RSA.

c1 = m;® mod N
=c=c-c=(m-mp)®modN
¢ = my* mod N

@ Homomorphic encryption: given ¢; and ¢, we can compute
the ciphertext ¢ for m; - my mod N
e using only the public-key
e without knowing the plaintexts m; and m;.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphism of RSA

@ RSA homomorphism: decryption function §(x) = x4 mod N

d(c1 X @) =d(c1) x () (mod N)

Ciphertexts Z/NZ x Z)NZ ——— 7./NZ
l&,o‘ Jo‘
Plaintexts Z/NZ x 7.JNZ —=— Z/NZ

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Paillier Cryptosystem

e Additively homomorphic: Paillier cryptosystem [P99]

c1 = g™ mod N?
= C1-C = gm1+m2 (V] mod N2
o = g™ mod N?

Ciphertexts Z/N?Z x 7./ N?Z ——— 7./ N?Z
Plaintexts Z/NZ x Z.JNZ — 7./NZ

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Application of Paillier Cryptosystem

o Additively homomorphic: Paillier cryptosystem

c1 = g™ mod N?
=16 = g’"1+m2 M mod N2
o = g™ mod N?

@ Application: e-voting.
e Voter i encrypts his vote m; € {0, 1} into:

¢ =g™m -z mod N?

e Votes can be aggregated using only the public-key:

c—Hc, i zmodN2

e c is eventually decrypted to recover

m=>3.m;

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic encryption

e Multiplicatively homomorphic: RSA.

1 = m;® mod N
== (my-my)® mod N
¢ = my* mod N

o Additively homomorphic: Paillier

= g™ mod N?
c1=g™ mo L= g™t IV og 2
o = g™ mod N?

@ Fully homomorphic: homomorphic for both addition and
multiplication
e Open problem until Gentry's
breakthrough in 2009.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic public-key encryption

@ We restrict ourselves to public-key encryption of a single bit:

o 0 203ef6124 . .. 23ab8746, 1 - b327653cl . .. db32654¢
e Encryption must be probabilistic.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic public-key encryption

@ We restrict ourselves to public-key encryption of a single bit:
o 0 7% 203ef6124 . ..23ab8715, 1 % b327653cl .. . db3265,6
e Encryption must be probabilistic.

@ Fully homomorphic property

o Given Epc(x) and Epk(y), one can compute Epc(x @ y) and
Epk(x - y) without knowing the private-key.

X y X y Epk(X) Epk(y) Epk(X) Epk(}’)
\(?/ \(?/ \C?/ \C?/
x®y x-y Ep(x®y) Epi(x - y)
Plaintext world Ciphertext world

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Evaluation of any function

@ Universality

o We can evaluate homomorphically any boolean computable
function f : {0,1}" — {0,1}

L
®\>/>>5
d
Y

f(Xl7X27X37 X4, X5)

Plaintext world

Jean-Sébastien Coron

Epk(x1) Epk(x2) Epi(x3) Epk(xa) Epk(xs)

\ /)
o o X
x) &)
)

i

Epi(f(x1, X2, X3, X4, X5))

Ciphertext world

Introduction to Fully Homomorphic Encryption

Outsourcing computation (1)

(=]
0

@ Alice wants to outsource the computation of f(x)
e but she wants to keep x private

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (1)

ci = Epk(xi) '

=

@ Alice wants to outsource the computation of f(x)
e but she wants to keep x private

@ She encrypts the bits x; of x into ¢; = Epk(x;) for her pk
e and she sends the ¢;'s to the server

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

m G = pk(Xi) '

@ The server homomorphically evaluates f(x)
e by writing f(x) = f(x1,...,Xp) as a boolean circuit.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

m G = pk(Xi) '

¢ = En(f(x))

@ The server homomorphically evaluates f(x)
e by writing f(x) = f(x1,...,Xp) as a boolean circuit.
o Given Epc(x;), the server eventually obtains ¢ = Epi(f(x))

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

m ¢i = Epi(xi) '

¢ = Ep(f(x))

y = Dsk(c) = f(x)

@ The server homomorphically evaluates 7(x)

o by writing f(x) = f(xi,...,x,) as a boolean circuit.

o Given Epc(x;), the server eventually obtains ¢ = Epx(f(x))
e Finally Alice decrypts c into y = f(x)

e The server does not learn x.

o Only Alice can decrypt to recover f(x).
@ Alice could also keep f private.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully Homomorphic Encryption: first generation

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

e Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully Homomorphic Encryption: first generation

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].
e Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

@ 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over
the integers [DGHV10].
o Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

o Public-key compression [CNT12]
o Batch and homomorphic evaluation of AES [CCKLLTY13].

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV Scheme

o Ciphertext for m € {0,1}:
c=q-p+2r+m

where p is the secret-key, g and r are randoms.
@ Decryption:
(c mod p) mod2=m
@ Parameters:
=~ 2-107 bits
p: n =~ 2700 bits

c=[_J [|

r: p~T71 bits

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Properties of DGHV

o Addition:

a=q-p+2n+m

=>a+e=4d- 2r' + my +m
=qa-p+2r+m 1T @=q-ptor+m+m

e ¢1 + ¢ is an encryption of m; + my mod 2 = my my

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Properties of DGHV

o Addition:

a=q-p+2n+m

=>a+e=4d- 2r' + my +m
=qa-p+2r+m 1T @=q-ptor+m+m

e ¢1 + ¢ is an encryption of m; + my mod 2 = my my
@ Multiplication:

cA=qi-p+2n+m

=ca-a=4" -p+2r’ :
Q=q -pt2rn+m L@ =g prarm e m

with
r" =2rrn 4+ rnmy+ rnm

@ ¢ - ¢ is an encryption of my - my
o Noise becomes twice larger.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphism of DGHV

@ DGHYV ciphertext:

c=q-p+2r+m

e Homomorphism: §(x) = (x mod p) mod 2
e only works if noise r is smaller than p

Ciphertexts Zx7 —* .7
J&& Jo

. ®,x
Plaintexts Do X Ly ——— 7

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Somewhat homomorphic scheme

@ The number of multiplications is limited.

o Noise grows with the number of multiplications.
e Noise must remain < p for correct decryption.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key Encryption with DGHV

@ For now, encryption requires the knowledge of the secret p:

c=q-p+2r+m

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key Encryption with DGHV

@ For now, encryption requires the knowledge of the secret p:

c=q-p+2r+m

@ We can actually turn it into a public-key encryption scheme
e Using the additively homomorphic property

@ Public-key: a set of 7 encryptions of 0's.
Xj=qi-p+2r

@ Public-key encryption:

-
c:m—|—2r—|—Z€;-x;
i=1

for random ¢; € {0,1}.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bounding ciphertext size

@ DGHYV multiplication over Z

ca=qr-p+2n+m

b I- / .
Q=qx - p+2n+m = a-@=q -pt2r+m-m

e Problem: ciphertext size has doubled.
@ Constant ciphertext size

e We publish an encryption of 0 without noise xg = qo - p
o We reduce the product modulo xg

G3=C"C mod X0

=q" - p+2r+m-m

o Ciphertext size remains constant

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key size

v ~2-107 bits

x=[_| []
xx=[_| []

T~ 10*

@ Public-key size:
o 7.7 =2-10" bits = 25 GB !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

o Ciphertext: c=q-p+2r+m
v~ 2107 bits

p: 1=~ 2700 bits
-~

c=[_1J 1 |

-~
r: p~T71 bits

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

o Ciphertext: c=q-p+2r+m
v~ 2107 bits

p: 1=~ 2700 bits
-~

c=[_1J 1 |

r: p<2—7>1 bits
e Compute a pseudo-random y = f(seed) of v bits.

x=[_J |
d=x—2r—mmodp []

c=x-d_J | [|

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

o Ciphertext: c=q-p+2r+m
v~ 2107 bits

p: 1=~ 2700 bits
-~

c=[_1J 1 |

r: p<2—7>1 bits
e Compute a pseudo-random y = f(seed) of v bits.

x=[_J |
d=x—2r—mmodp []

c=x-d_J | [|

e Only store seed and the small
correction §.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

o Ciphertext: c=q-p+2r+m
v~ 2107 bits

p: 1=~ 2700 bits
-~

c=[_1J 1 |

r: p<2—7>1 bits
e Compute a pseudo-random y = f(seed) of v bits.

x=[_J |
d=x—2r—mmodp []

c=x-d_J | [|

e Only store seed and the small
correction §.

e Storage: ~ 2700 bits instead of
2107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Compressed Public Key

T~ 10*

y 2107 bits

x=[_|
x=[_]

xi=[_]

x =

Old pk: 25 GB

1~ 2700 bits

New pk: 3.4 MB !

Jean-Sébastien Coron

Introduction to Fully Homomorphic Encryption

Semantic security of DGHV

e Semantic security [GM82] for m € {0,1}:

o Knowing pk, the distributions E,«(0) and E,x(1) are
computationally hard to distinguish.

@ The DGHYV scheme is semantically secure, under the
approximate-gcd assumption.
o Approximate-gcd problem: given a set of x; = q; - p+ 17,
recover p.
e This remains the case with the compressed public-key, under
the random oracle model.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The approximate GCD assumption

o Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

e Given xp = p- qo and polynomially many x; = p- q; + r;, find p.
@ Brute force attack on the noise

o Given xg =qo-pand x; = g1 - p+ r with || < 2°, guess ry

and compute gecd(xg, x1 — r1) to recover p.
e Requires 2” gcd computation
o Countermeasure: take a sufficiently large p

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Improved attack against PACD [CN12]

@ Given xg = p-qo and many x; = p - g; + r;, find p.
o Improved attack in O(2°/2) [CN12]

201
p = gcd <xo, H (x1 — i) mod x0>

i=0

m—1m—1
= gcd <Xo, H(xl—b—m~a) modx0>, where m = 2°/2
a=0 b=0

m—1
= gcd <xo, H f(a) mod Xo)

a=0

m—1

o f(y):= [l (a1 —b—m-y)mod xo

o Evaluate the polynomial f(y) at m
points in time O(m) = O(2°/?)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Approximate GCD attack

o Consider t integers: x; = p-qg;+ r; and xg = p - qo-
o Consider a vector i orthogonal to the x;'s:

t
Zu;~x,-:0 mod Xxg

i=1

o This gives Zle ui - r; =0 mod p.
o If the u;'s are sufficiently small, since the r;'s are small this
equality will hold over Z.
e Such vector & can be found using LLL.

@ By collecting many orthogonal vectors one can recover 1" and
eventually the secret key p
e Countermeasure

e The size 7 of the x;'s must be
sufficiently large.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (simplified)

@ Key generation:
o Generate a set of 7 public integers:

xi=p-q+r, 1<i<7T

and xp = p - qo, where p is a secret prime.
o Size of pis 7. Size of x; is 7. Size of r; is p.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (simplified)

@ Key generation:
o Generate a set of 7 public integers:

Xpi=p-qit+r, 1<i<T
and xp = p - qo, where p is a secret prime.
o Size of pis 7. Size of x; is 7. Size of r; is p.

@ Encryption of a message m € {0,1}:
o Generate random &; < {0,1} and a random integer r in
(—2#,27"), and output the ciphertext:

.
c:m+2r+225;~x,- mod xg
i=1

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (simplified)

@ Key generation:
o Generate a set of 7 public integers:

xi=p-q+r, 1<i<7T

and xp = p - qo, where p is a secret prime.
o Size of pis 7. Size of x; is 7. Size of r; is p.

@ Encryption of a message m € {0,1}:
o Generate random &; < {0,1} and a random integer r in
(—2#,27"), and output the ciphertext:

.
c:m+2r+225;~x,- mod xg
i=1

@ Decryption:

czm+2r+2Ze;-r; (mod p)
i=1

o Output m < (¢ mod p) mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

@ Noise in ciphertext:

.

oc=m+2-r modpwherer' =r+> ¢ -nr
i=1

o r’ is the noise in the ciphertext.

e It must remain < p for correct decryption.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

@ Noise in ciphertext:

.

oc=m+2-r modpwherer' =r+> ¢ -nr
i=1

o r’ is the noise in the ciphertext.

e It must remain < p for correct decryption.

@ Homomorphic addition: ¢3 < ¢; + & mod xp

ocit+ca=m+m+2(rH+r) modp
o Works if noise r{ + r} still less than p.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

@ Noise in ciphertext:

-
ec=m+2-r modpwherer' =r+> ¢ -r
i=1
o r’ is the noise in the ciphertext.
e It must remain < p for correct decryption.
@ Homomorphic addition: ¢3 < ¢; + & mod xp
ocit+ca=m+m+2(rH+r) modp
o Works if noise r{ + r} still less than p.
@ Homomorphic multiplication: ¢3 < ¢; - ¢ mod xp
ec-=m -mp+2(my-rj+my-rf+2r-r}) modp
o Works if noise r{ - r remains less than p.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

@ Noise in ciphertext:
-
ec=m+2-r modpwherer' =r+> ¢ -r
i=1
o r’ is the noise in the ciphertext.
e It must remain < p for correct decryption.
@ Homomorphic addition: ¢3 < ¢; + & mod xp
ocit+ca=m+m+2(rH+r) modp
o Works if noise r{ + r} still less than p.
@ Homomorphic multiplication: ¢3 < ¢; - ¢ mod xp
ec-=m -mp+2(my-rj+my-rf+2r-r}) modp
o Works if noise r{ - r remains less than p.
@ Somewhat homomorphic scheme
o Noise grows with every homomorphic
addition or multiplication.
e This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Gentry's technique to get fully homomorphic encryption

@ To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:
e Only a polynomial f of small degree can computed
homomorphically, for 7 = {f(b1,...,b:) : degf < d}
] pk(f, Epk(bl), ey Epk(bt)) — Epk(f(bl, ey bt))

Vo (F
Ciphertexts Ct plf) C
Dsk("') Dsk(') feF
Plaintexts (Z2)t —f) Lo

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh: bootstrapping

@ Gentry's breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

o Evaluate the decryption polynomial not on the bits of the
ciphertext ¢ and the secret key sk, but homomorphically on
the encryption of those bits.

X . Encryption of
Ciphertext bits Secret key bits Ciphertext bits secret key bits

©Ia}-- Oat-me oty a0t

Decryption Decryption
Circuit Circuit

=

Encryption of l
Plai
a ;3 r;:ext refreshed

plaintext bit:
ciphertext

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh: bootstrapping

@ Gentry's breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

o Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for

the same plaintext.
. . Encryption of
Ciphertext bits Secret key bits Ciphertext bits secret key bits

O} Oat--me ot o] e

Decryption Decryption
Circuit Circuit

=

l Encryption of
. laintext bit:
Plaintext P
Lit x refreshed
ciphertext

@ will be explained in next lecture.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh

@ Refreshed ciphertext:
o If the degree of the decryption polynomial D(,-) is small
enough, the resulting noise in the new ciphertext can be
smaller than in the original ciphertext.

¢ L [] |

Refresh

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic encryption

@ Fully homomorphic encryption

e Using this “ciphertext refresh” procedure, the number of
homomorphic operations becomes unlimited
o We get a fully homomorphic encryption scheme.

L/ [| L/ [|

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Four generations of FHE

First generation: bootstrapping, slow

o Breakthrough scheme of Gentry [G09], based on ideal lattices.
o FHE over the integers: [DGHV10]

Second generation: [BV11], [BGV1]]

o More efficient, (R)LWE based. Relinearization, depth-linear
construction with modulus switching.

@ Third generation [GSW13]

e No modulus switching, slow noise growth
o Improved bootstrapping: [BV14], [AP14]

Fourth gen: [CKKS17]
e Approximate floating point arithmetic

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

@ Homomorphic encryption based on polynomial evaluation
e Homomorphism: ¢ : Z4[X] — Z4[x] given by evaluation at

secret 5= (s1,...,5,)
Ciphertexts ZqlX] X Zg[X] ——— Zg[X]
P,a J(s
Plaintexts ZgxZg —5 47,

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

@ Homomorphic encryption based on polynomial evaluation
e Homomorphism: ¢ : Z4[X] — Z4[x] given by evaluation at

secret 5= (s1,...,5,)
Ciphertexts ZqlX] X Zg[X] ——— Zg[X]
P,a J(s
Plaintexts ZgxZg —5 47,

@ One must add some noise, otherwise broken by linear algebra.
o f(5) =2e+ mmod g, for some small noise e € Z,

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

@ Homomorphic encryption based on polynomial evaluation
e Homomorphism: ¢ : Z4[X] — Z4[x] given by evaluation at

secret 5= (s1,...,5,)
Ciphertexts ZqlX] X Zg[X] ——— Zg[X]
P,a J(s
Plaintexts ZgxZg —5 47,

@ One must add some noise, otherwise broken by linear algebra.
o f(5) =2e+ mmod g, for some small noise e € Z,
e LWE assumption [RO5]
o Linear polynomials f;(X) with
|f:(5) mod g| <« g are comp. indist.
from random f;(X) modulo g.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

LWE-based encryption [R05]

o Key generation
o Secret-key: s € (Zq)"
@ Encryption of m € {0,1}
o A vector c € Fg such that
(c,s) =2e+m (mod q)
o for a small error e.

EEE -

2e 4+ m

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

LWE-based encryption [R05]

o Key generation
o Secret-key: s € (Zq)"
@ Encryption of m € {0,1}
o A vector c € Fg such that
(c,s) =2e+m (mod q)
o for a small error e.

EEE -

2e 4+ m

@ Distribution of the error e S

o One can take the centered binomial distribution x with
parameter k.
o Let e = h(u) — h(v) where u,v + {0,1}", where h is the
Hamming weight function.
@ Decryption
e Compute m = (c-s mod g) mod 2
o Decryption works if |e| < q/4

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

LWE-based encryption: alternative encoding

@ The message m can also be encoded in the MSB.
e Encryption of m € {0,1}
o A vector ¢ € Fy such that

(c,s) =e+m-[q/2] (mod q)

EEE -
c e+m-[q/2]

@ Decryption ®

e Compute m = th({c,s) mod q)
o where th(x) =1 if x € (g/4,3q/4), and 0 otherwise.
0

3q/4 q/4

q/2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

LWE-based public-key encryption

o Key generation
o Secret-key: s € (Zq)", with s; = 1.
o Public-key: A such that A-s = e for small e
e Every row of A is an LWE encryption of 0.

e Encryption of m € {0,1}
c=u-A+(m-[q/2],0,...,0)

o for a small u

[T TT1 +141-fmfiodiol] = [

u C

e Decryption A
o Compute m = th({c,s) mod q)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

RLWE-based schemes

@ RLWE-based scheme

o We replace Z, by the polynomial ring
Ry = Zq|x]/ < x* +1 >, where £ is a power of 2.

e Addition and multiplication of polynomials are performed
modulo x! 4+ 1 and prime q.

o We can take m € Ry = Z[x]/ <x* + 1>
instead of {0,1}: more bandwidth.

@ Ring Learning with Error (RLWE) assumption

o t=a-s+eforsmalls, e< R
e Given t, a, it is difficult to recover s.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

RLWE-based public-key encryption

@ Key generation
o t =a-s+ e for random a < R; and small s, e < R.
@ Public-key encryption of m € Ry
ec=(a-r+e, t-r+e+|q/2]m), for small e, e; and r.
e Decryption of ¢ = (u, v)
o Compute m =th(v —s- u)
v—s-u=t-r+e+|q/2lm—s-(a-r+e)
=(t—a-s)-rt+e+[q/2lm—s-¢e
=|q/2lm+e-r+e—s-¢
small

o m€E Ry =Zy[x]/ <x*+ 1>: more bandwidth.
0

3q/4 q/4

q/2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic addition

o LWE ciphertexts can be added
e with a small increase in the noise

(c1,8) =er+mi-(g+1)/2 (mod q)
(c2,8) =e2+mz-(g+1)/2 (mod q)
(c1+ca,s)=er+ e+ (m+m)-(g+1)/2 (mod q)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic multiplication

@ Homomorphic multiplication of two ciphertexts is more
complex, with 3 steps:

e 1) Tensor product
@ We obtain a ciphertext in Z7, under a new key s X s.

e 2) Binary decomposition
@ We obtain a binary ciphertext in {0, 1}"2’"‘7, under a new key

s’ = PowerOfTwo(s x s), with nqg = [log, q|

o 3) Key switching

e We switch the key from s’ back to the original key s.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Tensor product

@ LWE ciphertexts can be multiplied by tensor product.

2(cy,s) - (c2,8) =2 (Zn: Cl,i5i> (i C2,i5i>
i—1 i—1

=2(e1+(q+1)/2-m1)- (24 (g +1)/2- my)

@ This gives
n

n
ZZ2C1’,'C2’J' sisi=e+mm-(q+1)/2 (mod q)
i=1 j=1

o for a new eroor e = 2e1e; + mex + Mg
@ Therefore ¢’ = (2¢1,i - &))ij € Zgz is a new LWE ciphertext
o for the secret-key s’ = (s; - 5j)i j € Zg2
(c,sy =e+mmy-(qg+1)/2 (mod q)

@ The bitsize of the noise has roughly doubled.
o We get a ciphertext with n?> components instead of n.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Binary decomposition

o We want to have a ciphertext with binary components only.
e We use binary decomposition. For any 0 < a, b < g, we have,
using nq = [log, q1:

ng—1

a-b= Za;~2ib (mod q)
i=0

= (BitDecomp(a), PowerOf2(b))

o BitDecomp(a) = (ao, ..., an,—1) and
PowerOf2(b) = (b,21b, ..., 2% 1p).
o We extend BitDecomp and PowerOf2 to vectors, by
concatenation
@ New binary ciphertext from ¢ € Zg' and s € Zg
o Let ¢’ = BitDecomp(c), and s’ = PowerOf2(s)

(c’,s') = (BitDecomp(c), PowerOf2(s)) = (c,s)

e The new binary ciphertext ¢’ encrypts the same message under
the new secret-key s'.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Key switching

@ How to switch keys ?
Start with a binary ciphertext c € {0,1} under key s € Zg.

o We write u = {(c,s) = Zc, s; (mod q)

Let s’ € Zj be another key
We con5|der LWE pseudo-encryptions t; of each s; under the
new key s’, with (t;,s’) = f; +s; (mod g) for small errors f;.
o Generating the new ciphertext under s’

o We can write:

Zm:c, ((ti,s") <Zc,t,,5>—zmjci~fi (mod q)
= =1

i=1

m
o We can define a new ciphertext ¢’ =) ¢;it; (mod g) and we
i=1
get for a small error f:

(cs') =(c,;s)+f (mod q)

e = the two ciphertexts encrypt the same message

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Summary of homomorphic multiplication

@ Homomorphic multiplication of two ciphertexts has 3 steps:
o 1) Tensor product
@ We obtain a ciphertext in Z"Z, under a new key s X s.
e 2) Binary decomposition
@ We obtain a binary ciphertext in {0, 1}”2'"‘7, under a new key
s’ = PowerOfTwo(s x s), with nqg = [log, q|
e 3) Key switching
@ We switch the key from s’ back to the original key s.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Conclusion

@ First generation of fully homomorphic encryption

e The DGHV scheme
o Overview of bootstrapping

@ LWE-based encryption

o Ciphertext multiplication: relinearization
o Next lecture

e Bootstrapping explained

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

CN12

CMNT11

CNT12

DGHV10

Gen09

P99

R05

Yuanmi Chen, Phong Q. Nguyen. Faster Algorithms for
Approximate Common Divisors: Breaking
Fully-Homomorphic-Encryption Challenges over the Integers.
EUROCRYPT 2012: 502-519

Jean-Sébastien Coron, Avradip Mandal, David Naccache, Mehdi
Tibouchi: Fully Homomorphic Encryption over the Integers with
Shorter Public Keys. CRYPTO 2011: 487-504

Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi. Public
Key Compression and Modulus Switching for Fully Homomorphic
Encryption over the Integers. EUROCRYPT 2012: 446-464
Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan.
Fully Homomorphic Encryption over the Integers. EUROCRYPT
2010: 24-43

Craig Gentry. Fully homomorphic encryption using ideal lattices.
STOC 2009: 169-178

Pascal Paillier. Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes. EUROCRYPT 1999: 223-238

Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. STOC 2005: 84-93

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

