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@ Previous lecture: basic techniques for fully homomorphic
encryption
o First generation of FHE, the DGHV scheme
e Overview of bootstrapping
o LWE-based encryption. Relinearization for ciphertext
multiplication
@ This lecture: leveled FHE, bootstrapping
e Modulus switching
o Leveled FHE
o Bootstrapping
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Four generations of FHE

First generation: bootstrapping, slow

o Breakthrough scheme of Gentry [G09], based on ideal lattices.
o FHE over the integers: [DGHV10]

Second generation: [BV11], [BGV1]]

o More efficient, (R)LWE based. Relinearization, depth-linear
construction with modulus switching.

@ Third generation [GSW13]

e No modulus switching, slow noise growth
o Improved bootstrapping: [BV14], [AP14]

Fourth gen: [CKKS17]
e Approximate floating point arithmetic
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Second generation: LWE-based encryption

@ Homomorphic encryption based on polynomial evaluation
e Homomorphism: ¢ : Z4[X] — Z4[x] given by evaluation at

secret 5= (s1,...,5,)
Ciphertexts ZqlX] X Zg[X] ——— Zg[X]
P,a J(s
Plaintexts ZgxZg —5 47,
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Second generation: LWE-based encryption

@ Homomorphic encryption based on polynomial evaluation
e Homomorphism: ¢ : Z4[X] — Z4[x] given by evaluation at

secret 5= (s1,...,5,)
Ciphertexts ZqlX] X Zg[X] ——— Zg[X]
P,a J(s
Plaintexts ZgxZg —5 47,

@ One must add some noise, otherwise broken by linear algebra.
o f(5) =2e+ mmod g, for some small noise e € Z,
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Second generation: LWE-based encryption

@ Homomorphic encryption based on polynomial evaluation
e Homomorphism: ¢ : Z4[X] — Z4[x] given by evaluation at

secret 5= (s1,...,5,)
Ciphertexts ZqlX] X Zg[X] ——— Zg[X]
P,a J(s
Plaintexts ZgxZg —5 47,

@ One must add some noise, otherwise broken by linear algebra.
o f(5) =2e+ mmod g, for some small noise e € Z,
e LWE assumption [RO5]
o Linear polynomials f;(X) with
|f:(5) mod g| <« g are comp. indist.
from random f;(X) modulo g.
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LWE-based encryption [R05]

o Key generation
o Secret-key: s € (Zq)"
@ Encryption of m € {0,1}
o A vector c € Fg such that
(c,s) =2e+m (mod q)
o for a small error e.

EEE -

2e 4+ m
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LWE-based encryption [R05]

o Key generation
o Secret-key: s € (Zq)"
@ Encryption of m € {0,1}
o A vector c € Fg such that
(c,s) =2e+m (mod q)
o for a small error e.

EEE -

2e 4+ m

@ Distribution of the error e S

o One can take the centered binomial distribution x with
parameter k.
o Let e = h(u) — h(v) where u,v + {0,1}", where h is the
Hamming weight function.
@ Decryption
e Compute m = (c-s mod g) mod 2
o Decryption works if |e| < q/4
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LWE-based encryption: alternative encoding

@ The message m can also be encoded in the MSB.
e Encryption of m € {0,1}
o A vector ¢ € Fy such that

(c,s) =e+m-[q/2] (mod q)

EEE -
c e+m-[q/2]

@ Decryption ®

e Compute m = th({c,s) mod q)
o where th(x) =1 if x € (g/4,3q/4), and 0 otherwise.
0

3q/4 q/4

q/2
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LWE-based public-key encryption

o Key generation
o Secret-key: s € (Zq)", with s; = 1.
o Public-key: A such that A-s = e for small e
e Every row of A is an LWE encryption of 0.

e Encryption of m € {0,1}
c=u-A+(m-[q/2],0,...,0)

o for a small u

[T TT1 +141-fmfiodiol] = [

u C

e Decryption A
o Compute m = th({c,s) mod q)
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Homomorphic addition

o LWE ciphertexts can be added
e with a small increase in the noise

(c1,8) =er+mi-(g+1)/2 (mod q)
(c2,8) =e2+mz-(g+1)/2 (mod q)
(c1+ca,s)=er+ e+ (m+m)-(g+1)/2 (mod q)
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Homomorphic multiplication

@ Homomorphic multiplication of two ciphertexts is more
complex, with 3 steps:

e 1) Tensor product
@ We obtain a ciphertext in Z7, under a new key s X s.

e 2) Binary decomposition
@ We obtain a binary ciphertext in {0, 1}"2’"‘7, under a new key

s’ = PowerOfTwo(s x s), with nqg = [log, q|

o 3) Key switching

e We switch the key from s’ back to the original key s.
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Tensor product

@ LWE ciphertexts can be multiplied by tensor product.

2(cy,s) - (c2,8) =2 (Zn: Cl,i5i> (i C2,i5i>
i—1 i—1

=2(e1+(q+1)/2-m1)- (24 (g +1)/2- my)

@ This gives
n

n
ZZ2C1’,'C2’J' sisi=e+mm-(q+1)/2 (mod q)
i=1 j=1

o for a new eroor e = 2e1e; + mex + Mg
@ Therefore ¢’ = (2¢1,i - &))ij € Zgz is a new LWE ciphertext
o for the secret-key s’ = (s; - 5j)i j € Zg2
(c,sy =e+mmy-(qg+1)/2 (mod q)

@ The bitsize of the noise has roughly doubled.
o We get a ciphertext with n?> components instead of n.
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Binary decomposition

o We want to have a ciphertext with binary components only.
e We use binary decomposition. For any 0 < a, b < g, we have,
using nq = [log, q1:

ng—1

a-b= Za;~2ib (mod q)
i=0

= (BitDecomp(a), PowerOf2(b))

o BitDecomp(a) = (ao, ..., an,—1) and
PowerOf2(b) = (b,21b, ..., 2% 1p).
o We extend BitDecomp and PowerOf2 to vectors, by
concatenation
@ New binary ciphertext from ¢ € Zg' and s € Zg
o Let ¢’ = BitDecomp(c), and s’ = PowerOf2(s)

(c’,s') = (BitDecomp(c), PowerOf2(s)) = (c,s)

e The new binary ciphertext ¢’ encrypts the same message under
the new secret-key s'.
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Key switching

@ How to switch keys ?
Start with a binary ciphertext c € {0,1} under key s € Zg.

o We write u = {(c,s) = Zc, s; (mod q)

Let s’ € Zj be another key
We con5|der LWE pseudo-encryptions t; of each s; under the
new key s’, with (t;,s’) = f; +s; (mod g) for small errors f;.
o Generating the new ciphertext under s’

o We can write:

Zm:c, ((ti,s") <Zc,t,,5>—zmjci~fi (mod q)
= =1

i=1

m
o We can define a new ciphertext ¢’ = ) ¢;it; (mod g) and we
i=1
get for a small error f:

(cs') =(c,;s)+f (mod q)

e = the two ciphertexts encrypt the same message
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Summary of homomorphic multiplication

@ Homomorphic multiplication of two ciphertexts has 3 steps:
o 1) Tensor product
@ We obtain a ciphertext in Z"Z, under a new key s X s.
e 2) Binary decomposition
@ We obtain a binary ciphertext in {0, 1}”2'"‘7, under a new key
s’ = PowerOfTwo(s x s), with nqg = [log, q|
e 3) Key switching
@ We switch the key from s’ back to the original key s.
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Modulus switching

@ Consider a ciphertext modulo g
(c,s) =1q/2] -m+e (modq)
=q/2-m+ec+e+A-q
o forle| <1/2and A€ Z
@ Switching to a ciphertext modulo p < g

(e

o Write ¢’ = [c- p/q] =c- p/q+ u where ||ul|o < 1/2. Then

,s):p/2-m+€'§+e‘§+)\-p

QT

(c;s) =|p/2] - m+¢€ (mod p)

o where [¢/| <e-p/g+1+3-|s|:
@ We get a new ciphertext ¢/ modulo p encrypting the same m
o with scaled error ¢’ ~ e - p/q.
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The BGV scheme: modulus switching [BGV11]

@ Modulus switching from ¢ modulo g to ¢/ modulo p < g
o Encrypts the same message m, but with error scaled by p/q

@ Application: reducing noise growth. Assume p/q = 27°.

q q p

X p/q

p 2p p

e Noise reduction without bootstrapping !
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Leveled fully homomorphic encryption

@ Previous model: exponential growth of noise

q q q q
D X H X H X D
p 2p 4p 8p

e Only bootstrapping can give FHE
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Leveled fully homomorphic encryption

@ Previous model: exponential growth of noise

q q q q
D X H X H X D
p 2p 4p 8p

e Only bootstrapping can give FHE

@ New model: modulus switching after each multiplication layer
o with a ladder of moduli p; such that pjy1/p; =27°

P1 P1
P2 P2
« S Ps Ps Pa Pa
SHoU U0
—_—
P 2p P 2p P 2p P 2p

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



Leveled fully homomorphic encryption

@ Previous model: exponential growth of noise

q q q q
D X H X H X D
p 2p 4p 8p

e Only bootstrapping can give FHE

@ New model: modulus switching after each multiplication layer
o with a ladder of moduli p; such that pjy1/p; =27°

P1 P1
P2 p2
« S Ps Ps Pa Pa
o e B e e I N
—_—
p 2p p 2p P 2p p 2p

o Leveled FHE

o Size of p; linear in the circuit depth
o Parameters depend on the depth
e Can accommodate polynomial depth
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Gentry's technique to get fully homomorphic encryption

@ To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:
e Only a polynomial f of small degree can computed
homomorphically, for 7 = {f(b1,...,b:) : degf < d}
] pk(f, Epk(bl), ey Epk(bt)) — Epk(f(bl, ey bt))

Vo (F
Ciphertexts Ct plf) C
Dsk("') Dsk(') feF
Plaintexts (Z2)t —f) Lo
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Ciphertext refresh: bootstrapping

@ Gentry's breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

o Evaluate the decryption polynomial not on the bits of the
ciphertext ¢ and the secret key sk, but homomorphically on
the encryption of those bits.

X . Encryption of
Ciphertext bits Secret key bits Ciphertext bits secret key bits

©Ia}-- Oat-me oty a0t

Decryption Decryption
Circuit Circuit

=

Encryption of l
Plai
a ;3 r;:ext refreshed

plaintext bit:
ciphertext
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Ciphertext refresh: bootstrapping

@ Gentry's breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

o Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for

the same plaintext.
X . Encryption of
Ciphertext bits Secret key bits Ciphertext bits secret key bits

Ot Oat-me oty bt

Decryption Decryption
Circuit Circuit

=

Encryption of l
Plai
a ;3 r;:ext refreshed

plaintext bit:
ciphertext
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Ciphertext refresh

@ Refreshed ciphertext:
o If the degree of the decryption polynomial D(,-) is small
enough, the resulting noise in the new ciphertext can be
smaller than in the original ciphertext.

¢ L [] |

Refresh
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Fully homomorphic encryption

@ Fully homomorphic encryption

e Using this “ciphertext refresh” procedure, the number of
homomorphic operations becomes unlimited
o We get a fully homomorphic encryption scheme.

L/ [ | L/ [ |
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Bootstrapping LWE ciphertexts

@ Building the decryption circuit
o Takes as input the bits of the ciphertext, and the bits of the
secret-key.
o Outputs the decrypted message m € {0,1}

Ciphertext bits Secret key bits

DIAENY B[t} )3
\ /

Decryption
Circuit

Plaintext
bit

o Easier to switch to encryption modulo 2%, instead of g

o We perform a modulus switching to modulo 2% using previous
technique.
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Building the decryption circuit

e First step: modulus switching to modulo 2%
o Let ¢ € Zg such that

(c,s)=e+m-(g+1)/2 (mod q)

From the previous modulus switching technique, we get

(c,s) =2"1. m+e (mod2¥)

where |¢/| < e-2K/q+ 1+ n/2.

For correct decryption, we should have |e’| < 2k—2.
Therefore we can take k = O(log n).

@ Second step: write the decryption circuit

e Using only Xor and And gates
o Starting from addition of two integers modulo 2.
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Building the decryption circuit (2)

@ We now have a ciphertext ¢ € Zj, such that:

n
<c,s>:Zc,--s,-:2k*1-m+e (mod 2K)
i=1

o We want to write this operation with Xor and And gates only.

@ 3 operations to compute with Xor and And gates:

e Computing ¢; - s; with ¢; € Zo« and s; € {0,1}
o We compute a And between each the k bits of ¢; and s;.

o Computing a+ b from a, b € Zy«
@ We use schoolbook addition, propagating the carry.

o Extracting m € {0,1} from a = 2K=1. m + e with |e| < 2k2,
@ m is the xor of the most significant and second most

significant bit of a

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



Bootstrapping achieved

@ Bootstrapping
o We perform the same operations as above, but
homomorphically
e Using an encryption of the secret-key bits

X . Encryption of
Ciphertext bits Secret key bits Ciphertext bits secret key bits

ol OE - D [ - {00 OO

Decryption Decryption
Circuit Circuit

=

Encryption of l
Plaintext
ot eeaned

plaintext bit:
ciphertext

o Refreshed ciphertext ¢’

e The noise of ¢’ only depends on the depth of the decryption
circuit, not on the initial noise of c.
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Third generation of FHE: ciphertext matrices

e Homomorphic encryption with matrices [GSW13]

o Ciphertexts are square matrices instead of vectors

e Homomorphism: 6(C,v) = p where p is eigenvalue for secret
eigenvector v

e Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZNXN o gNxN % 7NxN
Jb‘,é‘ Jé
Plaintexts 7 X 7 % Z
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Third generation of FHE: ciphertext matrices

e Homomorphic encryption with matrices [GSW13]
o Ciphertexts are square matrices instead of vectors
e Homomorphism: 6(C,v) = p where p is eigenvalue for secret
eigenvector v
e Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZNXN o gNxN % 7NxN
Jb‘,é‘ Jé
Plaintexts 7 X 7 % Z

@ One must add some noise, otherwise
broken by linear algebra
o C-v=p-v+e (modq)
o for message u € Z, for some small
noise e.
e Security based on LWE problem.
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Ciphertext matrices: slow noise growth

o Noise grow of ciphertext multiplication [GSW13]:
o Girv=p;-v+e; (modgqg), Go-v=pp-v+e (modq)
o (G-G) v==C (2 -v+te)=(u2-p1) v+es
e with E3I‘LL2'81+C1‘62
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Ciphertext matrices: slow noise growth

o Noise grow of ciphertext multiplication [GSW13]:
o Girv=p;-v+e; (modgqg), Go-v=pp-v+e (modq)
o (G- G) v==C-(pe-vte)= (2 p) v+es
e with E3I‘LL2~81+C1‘62

@ Slow noise growth:
o Ensure u; € {0,1}, using only NAND gates puz =1 — p11 - o
o Ciphertext flattening: ensure C; € {0,1}V*N  using binary

decomposition and v = (s1,...,2%,...,5,,...,2,).

o If |lei]leo < B and |lez]loc < B, |les]joc < (N+1)-B
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Ciphertext matrices: slow noise growth

o Noise grow of ciphertext multiplication [GSW13]:
o Girv=p;-v+e; (modgqg), Go-v=pp-v+e (modq)
o (G- G) v==C-(pe-vte)= (2 p) v+es
e with E3I‘LL2~81+C1‘62

@ Slow noise growth:
o Ensure u; € {0,1}, using only NAND gates puz =1 — p11 - o
o Ciphertext flattening: ensure C; € {0,1}V*N  using binary

decomposition and v = (s1,...,2%,...,5,,...,2,).

o If |lei]leo < B and |lez]loc < B, |les]joc < (N+1)-B

o Leveled FHE
o At depth L, |le[o < (N+1)L-B
o One can take ¢ > 8- B - (N + 1)l and
accommodate polynomial depth L.
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Fourth generation: homomorphic encryption for

approximate numbers

@ Homomorphic encryption for real numbers [CKKS17]
o Floating point arithmetic, instead of exact arithmetic.
e Starting point: Regev’s scheme.
e Homomorphism: ¢ : Z4[x] — Z4 given by evaluation at s

+,X

Ciphertexts Lg[x] X Zg[x] ——— Zg[X]
l&ﬁ Jo‘
Plaintexts Lgq x Lq B, Zq
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Fourth generation: homomorphic encryption for

approximate numbers

@ Homomorphic encryption for real numbers [CKKS17]
o Floating point arithmetic, instead of exact arithmetic.

e Starting point: Regev’s scheme.
e Homomorphism: ¢ : Z4[x] — Z4 given by evaluation at s

Ciphertexts Zg[x] X Zg[x] SERELEEN Zg[X]
l&ﬁ Jo‘
Plaintexts Lgq x Lq B, Zq

@ One must add some noise, otherwise broken by linear algebra.
o f(s) = m+ e mod g, for small e € Z,
o Noise only affects the low-order bits of
m: approximate computation, as in
floating point arithmetic.
e Application: neural networks.
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[CKKS17]: ciphertext multiplication and rescaling

o Ciphertext multiplication ¢(x) = c1(x) - c2(x)
o c(s)=(m +e1) (m+e)=mm+e* (mod q)
e with e* = mye, +eymy + e165.
@ Rescaling of ciphertext:
o c'(x) = [e(x)/p] (mod q/p)
o Valid encryption of |m/p] with noise ~ e/p
e Similar to modulus switching

mp my
—— ——

q | [&1] I | [«
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Conclusion

@ Main challenge: make FHE pratical !
o New primitives
o Libraries (HElib)
o Compiler to homomorphic evaluation
@ Applications
e Homomorphic machine learning: evaluate a neural network
without revealing the weights.
o Genome-wide association studies: linear regression, logistic
regression.
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