
Introduction to Fully Homomorphic Encryption
Part 2: leveled FHE and bootstrapping

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Overview

Previous lecture: basic techniques for fully homomorphic
encryption

First generation of FHE, the DGHV scheme
Overview of bootstrapping
LWE-based encryption. Relinearization for ciphertext
multiplication

This lecture: leveled FHE, bootstrapping

Modulus switching
Leveled FHE
Bootstrapping

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Four generations of FHE

First generation: bootstrapping, slow

Breakthrough scheme of Gentry [G09], based on ideal lattices.
FHE over the integers: [DGHV10]

Second generation: [BV11], [BGV11]

More efficient, (R)LWE based. Relinearization, depth-linear
construction with modulus switching.

Third generation [GSW13]

No modulus switching, slow noise growth
Improved bootstrapping: [BV14], [AP14]

Fourth gen: [CKKS17]

Approximate floating point arithmetic

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[x⃗]→ Zq[x] given by evaluation at
secret s⃗ = (s1, . . . , sn)

Ciphertexts Zq[x⃗]× Zq[x⃗] Zq[x⃗]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (s⃗) = 2e +m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (x⃗) with
|fi (s⃗) mod q| ≪ q are comp. indist.
from random fi (x⃗) modulo q.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[x⃗]→ Zq[x] given by evaluation at
secret s⃗ = (s1, . . . , sn)

Ciphertexts Zq[x⃗]× Zq[x⃗] Zq[x⃗]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (s⃗) = 2e +m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (x⃗) with
|fi (s⃗) mod q| ≪ q are comp. indist.
from random fi (x⃗) modulo q.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[x⃗]→ Zq[x] given by evaluation at
secret s⃗ = (s1, . . . , sn)

Ciphertexts Zq[x⃗]× Zq[x⃗] Zq[x⃗]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (s⃗) = 2e +m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (x⃗) with
|fi (s⃗) mod q| ≪ q are comp. indist.
from random fi (x⃗) modulo q.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

LWE-based encryption [R05]

Key generation
Secret-key: s ∈ (Zq)

n

Encryption of m ∈ {0, 1}
A vector c ∈ Fq such that

⟨c, s⟩ = 2e +m (mod q)

for a small error e.

· =

c

s

2e +m

Distribution of the error e
One can take the centered binomial distribution χ with
parameter κ.
Let e = h(u)− h(v) where u, v ← {0, 1}κ, where h is the
Hamming weight function.

Decryption
Compute m = (c · s mod q) mod 2
Decryption works if |e| < q/4

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

LWE-based encryption [R05]

Key generation
Secret-key: s ∈ (Zq)

n

Encryption of m ∈ {0, 1}
A vector c ∈ Fq such that

⟨c, s⟩ = 2e +m (mod q)

for a small error e.

· =

c

s

2e +m

Distribution of the error e
One can take the centered binomial distribution χ with
parameter κ.
Let e = h(u)− h(v) where u, v ← {0, 1}κ, where h is the
Hamming weight function.

Decryption
Compute m = (c · s mod q) mod 2
Decryption works if |e| < q/4

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

LWE-based encryption: alternative encoding

The message m can also be encoded in the MSB.

Encryption of m ∈ {0, 1}
A vector c ∈ Fq such that

⟨c, s⟩ = e +m · ⌊q/2⌋ (mod q)

· =

c

s

e +m · ⌊q/2⌋

Decryption

Compute m = th(⟨c, s⟩ mod q)
where th(x) = 1 if x ∈ (q/4, 3q/4), and 0 otherwise.

0

q/4

q/2

3q/4

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

LWE-based public-key encryption

Key generation

Secret-key: s ∈ (Zq)
n, with s1 = 1.

Public-key: A such that A · s = e for small e

Every row of A is an LWE encryption of 0.

Encryption of m ∈ {0, 1}
c = u · A+ (m · ⌊q/2⌉, 0, . . . , 0)

for a small u

· +
⌊q
2

⌉
· =m 0 0

u

A

c

Decryption

Compute m = th(⟨c, s⟩ mod q)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic addition

LWE ciphertexts can be added

with a small increase in the noise

⟨c1, s⟩ = e1 +m1 · (q + 1)/2 (mod q)

⟨c2, s⟩ = e2 +m2 · (q + 1)/2 (mod q)

⟨c1 + c2, s⟩ = e1 + e2 + (m1 +m2) · (q + 1)/2 (mod q)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic multiplication

Homomorphic multiplication of two ciphertexts is more
complex, with 3 steps:

1) Tensor product

We obtain a ciphertext in Zn2

q , under a new key s× s.

2) Binary decomposition

We obtain a binary ciphertext in {0, 1}n
2·nq , under a new key

s′ = PowerOfTwo(s× s), with nq = ⌈log2 q⌉
3) Key switching

We switch the key from s′ back to the original key s.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Tensor product

LWE ciphertexts can be multiplied by tensor product.

2⟨c1, s⟩ · ⟨c2, s⟩ = 2

(
n∑

i=1

c1,i si

)(
n∑

i=1

c2,i si

)
= 2(e1 + (q + 1)/2 ·m1) · (e2 + (q + 1)/2 ·m2)

This gives

n∑
i=1

n∑
j=1

2c1,ic2,j · si sj = e +m1m2 · (q + 1)/2 (mod q)

for a new eroor e = 2e1e2 +m1e2 +m2e1
Therefore c′ = (2c1,i · c2,j)i ,j ∈ Zn2

q is a new LWE ciphertext

for the secret-key s′ = (si · sj)i,j ∈ Zn2

q

⟨c′, s′⟩ = e +m1m2 · (q + 1)/2 (mod q)

The bitsize of the noise has roughly doubled.
We get a ciphertext with n2 components instead of n.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Binary decomposition

We want to have a ciphertext with binary components only.

We use binary decomposition. For any 0 ≤ a, b < q, we have,
using nq = ⌈log2 q⌉:

a · b =

nq−1∑
i=0

ai · 2ib (mod q)

= ⟨BitDecomp(a),PowerOf2(b)⟩
BitDecomp(a) = (a0, . . . , anq−1) and
PowerOf2(b) = (b, 21b, . . . , 2nq−1b).
We extend BitDecomp and PowerOf2 to vectors, by
concatenation

New binary ciphertext from c ∈ Zm
q and s ∈ Zm

q

Let c′ = BitDecomp(c), and s′ = PowerOf2(s)

⟨c′, s′⟩ = ⟨BitDecomp(c),PowerOf2(s)⟩ = ⟨c, s⟩

The new binary ciphertext c′ encrypts the same message under
the new secret-key s′.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Key switching

How to switch keys ?
Start with a binary ciphertext c ∈ {0, 1}m under key s ∈ Zm

q .

We write u = ⟨c, s⟩ =
m∑
i=1

ci · si (mod q)

Let s′ ∈ Zn
q be another key.

We consider LWE pseudo-encryptions ti of each si under the
new key s′, with ⟨ti , s′⟩ = fi + si (mod q) for small errors fi .

Generating the new ciphertext under s′

We can write:

u =
m∑
i=1

ci (⟨ti , s′⟩ − fi) =

〈
m∑
i=1

citi , s
′

〉
−

m∑
i=1

ci · fi (mod q)

We can define a new ciphertext c′ =
m∑
i=1

citi (mod q) and we

get for a small error f :

⟨c′, s′⟩ = ⟨c, s⟩+ f (mod q)

⇒ the two ciphertexts encrypt the same message

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Summary of homomorphic multiplication

Homomorphic multiplication of two ciphertexts has 3 steps:
1) Tensor product

We obtain a ciphertext in Zn2

q , under a new key s× s.

2) Binary decomposition

We obtain a binary ciphertext in {0, 1}n
2·nq , under a new key

s′ = PowerOfTwo(s× s), with nq = ⌈log2 q⌉
3) Key switching

We switch the key from s′ back to the original key s.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Modulus switching

Consider a ciphertext modulo q

⟨c, s⟩ = ⌊q/2⌋ ·m + e (mod q)

= q/2 ·m + ε+ e + λ · q
for |ε| ≤ 1/2 and λ ∈ Z

Switching to a ciphertext modulo p < q

⟨c · p
q
, s⟩ = p/2 ·m + ε · p

q
+ e · p

q
+ λ · p

Write c′ = ⌊c · p/q⌉ = c · p/q + u where ∥u∥∞ ≤ 1/2. Then

⟨c′, s⟩ = ⌊p/2⌉ ·m + e′ (mod p)

where |e′| ≤ e · p/q + 1 + 1
2 · ∥s∥1

We get a new ciphertext c′ modulo p encrypting the same m

with scaled error e′ ≃ e · p/q.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The BGV scheme: modulus switching [BGV11]

Modulus switching from c modulo q to c′ modulo p < q

Encrypts the same message m, but with error scaled by p/q

Application: reducing noise growth. Assume p/q = 2−ρ.

ρ

q

2ρ

q

ρ

p

× p/q

Noise reduction without bootstrapping !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Leveled fully homomorphic encryption

Previous model: exponential growth of noise

ρ

q

2ρ

q

4ρ

q

8ρ

q

× × ×

Only bootstrapping can give FHE

New model: modulus switching after each multiplication layer

with a ladder of moduli pi such that pi+1/pi = 2−ρ

ρ

p1

2ρ

p1

ρ

p2

2ρ

p2

ρ

p3

2ρ

p3

ρ

p4

2ρ

p4
× S × S × S ×

Leveled FHE

Size of p1 linear in the circuit depth
Parameters depend on the depth
Can accommodate polynomial depth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Leveled fully homomorphic encryption

Previous model: exponential growth of noise

ρ

q

2ρ

q

4ρ

q

8ρ

q

× × ×

Only bootstrapping can give FHE

New model: modulus switching after each multiplication layer

with a ladder of moduli pi such that pi+1/pi = 2−ρ

ρ

p1

2ρ

p1

ρ

p2

2ρ

p2

ρ

p3

2ρ

p3

ρ

p4

2ρ

p4
× S × S × S ×

Leveled FHE

Size of p1 linear in the circuit depth
Parameters depend on the depth
Can accommodate polynomial depth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Leveled fully homomorphic encryption

Previous model: exponential growth of noise

ρ

q

2ρ

q

4ρ

q

8ρ

q

× × ×

Only bootstrapping can give FHE

New model: modulus switching after each multiplication layer

with a ladder of moduli pi such that pi+1/pi = 2−ρ

ρ

p1

2ρ

p1

ρ

p2

2ρ

p2

ρ

p3

2ρ

p3

ρ

p4

2ρ

p4
× S × S × S ×

Leveled FHE

Size of p1 linear in the circuit depth
Parameters depend on the depth
Can accommodate polynomial depth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Gentry’s technique to get fully homomorphic encryption

To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

Only a polynomial f of small degree can computed
homomorphically, for F = {f (b1, . . . , bt) : deg f ≤ d}
Vpk(f ,Epk(b1), . . . ,Epk(bt))→ Epk(f (b1, . . . , bt))

Ciphertexts Ct C

Plaintexts (Z2)
t Z2

Vpk (f ,···)

Dsk (···) Dsk (·)

f

f ∈ F

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh: bootstrapping

Gentry’s breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

Evaluate the decryption polynomial not on the bits of the
ciphertext c and the secret key sk , but homomorphically on
the encryption of those bits.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption
Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:
refreshed
ciphertext

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh: bootstrapping

Gentry’s breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for
the same plaintext.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption
Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:
refreshed
ciphertext

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh

Refreshed ciphertext:

If the degree of the decryption polynomial D(·, ·) is small
enough, the resulting noise in the new ciphertext can be
smaller than in the original ciphertext.

C

Refresh

C ⋆

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic encryption

Fully homomorphic encryption

Using this “ciphertext refresh” procedure, the number of
homomorphic operations becomes unlimited
We get a fully homomorphic encryption scheme.

Refresh Refresh

×

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping LWE ciphertexts

Building the decryption circuit

Takes as input the bits of the ciphertext, and the bits of the
secret-key.
Outputs the decrypted message m ∈ {0, 1}

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

Easier to switch to encryption modulo 2k , instead of q

We perform a modulus switching to modulo 2k using previous
technique.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Building the decryption circuit

First step: modulus switching to modulo 2k

Let c ∈ Zn
q such that

⟨c, s⟩ = e +m · (q + 1)/2 (mod q)

From the previous modulus switching technique, we get

⟨c′, s⟩ = 2k−1 ·m + e′ (mod 2k)

where |e′| ≤ e · 2k/q + 1 + n/2.
For correct decryption, we should have |e′| ≤ 2k−2.
Therefore we can take k = O(log n).

Second step: write the decryption circuit

Using only Xor and And gates
Starting from addition of two integers modulo 2k .

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Building the decryption circuit (2)

We now have a ciphertext c ∈ Zn
2k

such that:

⟨c, s⟩ =
n∑

i=1

ci · si = 2k−1 ·m + e (mod 2k)

We want to write this operation with Xor and And gates only.

3 operations to compute with Xor and And gates:
Computing ci · si with ci ∈ Z2k and si ∈ {0, 1}

We compute a And between each the k bits of ci and si .

Computing a+ b from a, b ∈ Z2k

We use schoolbook addition, propagating the carry.

Extracting m ∈ {0, 1} from a = 2k−1 ·m + e with |e| < 2k−2.

m is the xor of the most significant and second most
significant bit of a

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping achieved

Bootstrapping

We perform the same operations as above, but
homomorphically
Using an encryption of the secret-key bits

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption
Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:
refreshed
ciphertext

Refreshed ciphertext c′

The noise of c′ only depends on the depth of the decryption
circuit, not on the initial noise of c.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Third generation of FHE: ciphertext matrices

Homomorphic encryption with matrices [GSW13]

Ciphertexts are square matrices instead of vectors
Homomorphism: δ(C , v) = µ where µ is eigenvalue for secret
eigenvector v
Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZN×N × ZN×N ZN×N

Plaintexts Z× Z Z

+,×

δ,δ δ

+,×

One must add some noise, otherwise
broken by linear algebra

C · v = µ · v + e (mod q)
for message µ ∈ Z, for some small
noise e.
Security based on LWE problem.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Third generation of FHE: ciphertext matrices

Homomorphic encryption with matrices [GSW13]

Ciphertexts are square matrices instead of vectors
Homomorphism: δ(C , v) = µ where µ is eigenvalue for secret
eigenvector v
Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZN×N × ZN×N ZN×N

Plaintexts Z× Z Z

+,×

δ,δ δ

+,×

One must add some noise, otherwise
broken by linear algebra

C · v = µ · v + e (mod q)
for message µ ∈ Z, for some small
noise e.
Security based on LWE problem.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext matrices: slow noise growth

Noise grow of ciphertext multiplication [GSW13]:

C1 · v = µ1 · v + e1 (mod q), C2 · v = µ2 · v + e2 (mod q)
(C1 · C2) · v = C1 · (µ2 · v + e2) = (µ2 · µ1) · v + e3
with e3 = µ2 · e1 + C1 · e2

Slow noise growth:

Ensure µi ∈ {0, 1}, using only NAND gates µ3 = 1− µ1 · µ2

Ciphertext flattening: ensure Ci ∈ {0, 1}N×N , using binary
decomposition and v = (s1, . . . , 2

ℓs1, . . . , sn, . . . , 2
ℓsn).

If ∥e1∥∞ ≤ B and ∥e2∥∞ ≤ B, ∥e3∥∞ ≤ (N + 1) · B
Leveled FHE

At depth L, ∥e∥∞ ≤ (N + 1)L · B
One can take q > 8 · B · (N + 1)L and
accommodate polynomial depth L.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext matrices: slow noise growth

Noise grow of ciphertext multiplication [GSW13]:

C1 · v = µ1 · v + e1 (mod q), C2 · v = µ2 · v + e2 (mod q)
(C1 · C2) · v = C1 · (µ2 · v + e2) = (µ2 · µ1) · v + e3
with e3 = µ2 · e1 + C1 · e2

Slow noise growth:

Ensure µi ∈ {0, 1}, using only NAND gates µ3 = 1− µ1 · µ2

Ciphertext flattening: ensure Ci ∈ {0, 1}N×N , using binary
decomposition and v = (s1, . . . , 2

ℓs1, . . . , sn, . . . , 2
ℓsn).

If ∥e1∥∞ ≤ B and ∥e2∥∞ ≤ B, ∥e3∥∞ ≤ (N + 1) · B
Leveled FHE

At depth L, ∥e∥∞ ≤ (N + 1)L · B
One can take q > 8 · B · (N + 1)L and
accommodate polynomial depth L.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext matrices: slow noise growth

Noise grow of ciphertext multiplication [GSW13]:

C1 · v = µ1 · v + e1 (mod q), C2 · v = µ2 · v + e2 (mod q)
(C1 · C2) · v = C1 · (µ2 · v + e2) = (µ2 · µ1) · v + e3
with e3 = µ2 · e1 + C1 · e2

Slow noise growth:

Ensure µi ∈ {0, 1}, using only NAND gates µ3 = 1− µ1 · µ2

Ciphertext flattening: ensure Ci ∈ {0, 1}N×N , using binary
decomposition and v = (s1, . . . , 2

ℓs1, . . . , sn, . . . , 2
ℓsn).

If ∥e1∥∞ ≤ B and ∥e2∥∞ ≤ B, ∥e3∥∞ ≤ (N + 1) · B
Leveled FHE

At depth L, ∥e∥∞ ≤ (N + 1)L · B
One can take q > 8 · B · (N + 1)L and
accommodate polynomial depth L.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fourth generation: homomorphic encryption for
approximate numbers

Homomorphic encryption for real numbers [CKKS17]

Floating point arithmetic, instead of exact arithmetic.
Starting point: Regev’s scheme.
Homomorphism: δ : Zq[x]→ Zq given by evaluation at s

Ciphertexts Zq[x]× Zq[x] Zq[x]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (s) = m + e mod q, for small e ∈ Zq

Noise only affects the low-order bits of
m: approximate computation, as in
floating point arithmetic.
Application: neural networks.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fourth generation: homomorphic encryption for
approximate numbers

Homomorphic encryption for real numbers [CKKS17]

Floating point arithmetic, instead of exact arithmetic.
Starting point: Regev’s scheme.
Homomorphism: δ : Zq[x]→ Zq given by evaluation at s

Ciphertexts Zq[x]× Zq[x] Zq[x]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (s) = m + e mod q, for small e ∈ Zq

Noise only affects the low-order bits of
m: approximate computation, as in
floating point arithmetic.
Application: neural networks.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

[CKKS17]: ciphertext multiplication and rescaling

Ciphertext multiplication c(x) = c1(x) · c2(x)
c(s) = (m1 + e1) · (m2 + e2) = m1m2 + e⋆ (mod q)
with e⋆ = m1e2 + e1m2 + e1e2.

Rescaling of ciphertext:

c ′(x) = ⌊c(x)/p⌉ (mod q/p)
Valid encryption of ⌊m/p⌉ with noise ≃ e/p
Similar to modulus switching

e1q

m1

e2q

m2

×

e⋆q

m1m2

e ′q/p

m1m2/p

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Conclusion

Main challenge: make FHE pratical !

New primitives
Libraries (HElib)
Compiler to homomorphic evaluation

Applications

Homomorphic machine learning: evaluate a neural network
without revealing the weights.
Genome-wide association studies: linear regression, logistic
regression.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

BGV11 Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. Fully
Homomorphic Encryption without Bootstrapping. Electron.
Colloquium Comput. Complex. 18: 111 (2011)

CKKS17 Jung Hee Cheon, Andrey Kim, Miran Kim, Yong Soo Song.
Homomorphic Encryption for Arithmetic of Approximate Numbers.
ASIACRYPT (1) 2017: 409-437

GSW13 Craig Gentry, Amit Sahai, Brent Waters. Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-Based. CRYPTO (1) 2013: 75-92

Gen09 Craig Gentry. Fully homomorphic encryption using ideal lattices.
STOC 2009: 169-178

R05 Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. STOC 2005: 84-93

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

