Introduction to Fully Homomorphic Encryption Part 2: leveled FHE and bootstrapping

Jean-Sébastien Coron
University of Luxembourg

Overview

- Previous lecture: basic techniques for fully homomorphic encryption
- First generation of FHE, the DGHV scheme
- Overview of bootstrapping
- LWE-based encryption. Relinearization for ciphertext multiplication
- This lecture: leveled FHE, bootstrapping
- Modulus switching
- Leveled FHE
- Bootstrapping

Four generations of FHE

- First generation: bootstrapping, slow
- Breakthrough scheme of Gentry [G09], based on ideal lattices.
- FHE over the integers: [DGHV10]
- Second generation: [BV11], [BGV11]
- More efficient, (R)LWE based. Relinearization, depth-linear construction with modulus switching.
- Third generation [GSW13]
- No modulus switching, slow noise growth
- Improved bootstrapping: [BV14], [AP14]
- Fourth gen: [CKKS17]
- Approximate floating point arithmetic

Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
- Homomorphism: $\delta: \mathbb{Z}_{q}[\vec{x}] \rightarrow \mathbb{Z}_{q}[x]$ given by evaluation at secret $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$

Ciphertexts

$$
\mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, x} \mathbb{Z}_{q}[\vec{x}]
$$

Plaintexts

$$
\mathbb{Z}_{q} \times \mathbb{Z}_{q} \xrightarrow{+, \times} \mathbb{Z}_{q}^{\downarrow}
$$

- One must add some noise, otherwise broken by linear algebra. - $f(\vec{s})=2 e+m \bmod q$, for some small noise $e \in \mathbb{Z}_{q}$
- LWE assumption [R05]
- Linear polynomials $f_{i}(\vec{x})$ with
$\left|f_{i}(\vec{s}) \bmod q\right| \ll q$ are comp. indist.
from random $f_{i}(\vec{x})$ modulo q.

Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
- Homomorphism: $\delta: \mathbb{Z}_{q}[\vec{x}] \rightarrow \mathbb{Z}_{q}[x]$ given by evaluation at secret $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$

Ciphertexts

$$
\mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, x} \mathbb{Z}_{q}[\vec{x}]
$$

Plaintexts

$$
\mathbb{Z}_{q} \times \mathbb{Z}_{q} \xrightarrow{+, \times} \mathbb{Z}_{q}^{\downarrow}
$$

- One must add some noise, otherwise broken by linear algebra.
- $f(\vec{s})=2 e+m \bmod q$, for some small noise $e \in \mathbb{Z}_{q}$
- Linear polynomials $f_{i}(\vec{x})$ with
$\left|f_{i}(\vec{s}) \bmod q\right| \ll q$ are comp. indist.
from random $f_{i}(\vec{x})$ modulo q.

Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
- Homomorphism: $\delta: \mathbb{Z}_{q}[\bar{x}] \rightarrow \mathbb{Z}_{q}[x]$ given by evaluation at secret $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$

Ciphertexts

$$
\begin{aligned}
& \mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+, x} \mathbb{Z}_{q}[\vec{x}] \\
& \mathbb{Z}_{q} \times \mathbb{Z}_{q} \xrightarrow{+, \times} \mathbb{Z}_{q}
\end{aligned}
$$

Plaintexts

- One must add some noise, otherwise broken by linear algebra.
- $f(\vec{s})=2 e+m \bmod q$, for some small noise $e \in \mathbb{Z}_{q}$
- LWE assumption [R05]
- Linear polynomials $f_{i}(\vec{x})$ with $\left|f_{i}(\vec{s}) \bmod q\right| \ll q$ are comp. indist. from random $f_{i}(\vec{x})$ modulo q.

LWE-based encryption [R05]

- Key generation
- Secret-key: $\mathbf{s} \in\left(\mathbb{Z}_{q}\right)^{n}$
- Encryption of $m \in\{0,1\}$
- A vector $\mathbf{c} \in \mathbb{F}_{q}$ such that

$$
\langle\mathbf{c}, \mathbf{s}\rangle=2 e+m \quad(\bmod q)
$$

- for a small error e.

$$
\begin{aligned}
& =\square \\
& 2 e+m
\end{aligned}
$$

- Distribution of the error e

S

- One can take the centered binomial distribution χ with parameter κ.
- Let $e=h(u)-h(v)$ where $u, v \leftarrow\{0,1\}^{\kappa}$, where h is the Hamming weight function.
- Decryption
- Compute $m=(\mathbf{c} \cdot \mathbf{s} \bmod q) \bmod 2$
- Decryption works if $|e|<q / 4$

LWE-based encryption [R05]

- Key generation
- Secret-key: $\mathbf{s} \in\left(\mathbb{Z}_{q}\right)^{n}$
- Encryption of $m \in\{0,1\}$
- A vector $\mathbf{c} \in \mathbb{F}_{q}$ such that

$$
\langle\mathbf{c}, \mathbf{s}\rangle=2 e+m \quad(\bmod q)
$$

- for a small error e.

- Distribution of the error e
- One can take the centered binomial distribution χ with parameter κ.
- Let $e=h(u)-h(v)$ where $u, v \leftarrow\{0,1\}^{\kappa}$, where h is the Hamming weight function.
- Decryption
- Compute $m=(\mathbf{c} \cdot \mathbf{s} \bmod q) \bmod 2$
- Decryption works if $|e|<q / 4$

LWE-based encryption: alternative encoding

- The message m can also be encoded in the MSB.
- Encryption of $m \in\{0,1\}$
- A vector $\mathbf{c} \in \mathbb{F}_{q}$ such that

$$
\langle\mathbf{c}, \mathbf{s}\rangle=e+m \cdot\lfloor q / 2\rfloor \quad(\bmod q)
$$

C

S

- Decryption
- Compute $m=\operatorname{th}(\langle\mathbf{c}, \mathbf{s}\rangle \bmod q)$
- where $\operatorname{th}(x)=1$ if $x \in(q / 4,3 q / 4)$, and 0 otherwise.

LWE-based public-key encryption

- Key generation
- Secret-key: $\mathbf{s} \in\left(\mathbb{Z}_{q}\right)^{n}$, with $s_{1}=1$.
- Public-key: A such that $\mathbf{A} \cdot \mathbf{s}=\mathbf{e}$ for small \mathbf{e} - Every row of \mathbf{A} is an LWE encryption of 0 .
- Encryption of $m \in\{0,1\}$

$$
\mathbf{c}=\mathbf{u} \cdot \mathbf{A}+(m \cdot\lfloor q / 2\rceil, 0, \ldots, 0)
$$

- for a small u

Homomorphic addition

- LWE ciphertexts can be added
- with a small increase in the noise

$$
\begin{aligned}
\left\langle\mathbf{c}_{1}, \mathbf{s}\right\rangle & =e_{1}+m_{1} \cdot(q+1) / 2 \quad(\bmod q) \\
\left\langle\mathbf{c}_{2}, \mathbf{s}\right\rangle & =e_{2}+m_{2} \cdot(q+1) / 2 \quad(\bmod q) \\
\left\langle\mathbf{c}_{1}+\mathbf{c}_{2}, \mathbf{s}\right\rangle & =e_{1}+e_{2}+\left(m_{1}+m_{2}\right) \cdot(q+1) / 2 \quad(\bmod q)
\end{aligned}
$$

Homomorphic multiplication

- Homomorphic multiplication of two ciphertexts is more complex, with 3 steps:
- 1) Tensor product
- We obtain a ciphertext in $\mathbb{Z}_{q}^{n^{2}}$, under a new key $\mathbf{s} \times \mathbf{s}$.
- 2) Binary decomposition
- We obtain a binary ciphertext in $\{0,1\}^{n^{2} \cdot n_{q}}$, under a new key $\mathbf{s}^{\prime}=$ PowerOfTwo(s $\times \mathbf{s}$), with $n_{q}=\left\lceil\log _{2} q\right\rceil$
- 3) Key switching
- We switch the key from \mathbf{s}^{\prime} back to the original key \mathbf{s}.
- LWE ciphertexts can be multiplied by tensor product.

$$
\begin{aligned}
2\left\langle\mathbf{c}_{1}, \mathbf{s}\right\rangle \cdot\left\langle\mathbf{c}_{2}, \mathbf{s}\right\rangle & =2\left(\sum_{i=1}^{n} c_{1, i} s_{i}\right)\left(\sum_{i=1}^{n} c_{2, i} s_{i}\right) \\
& =2\left(e_{1}+(q+1) / 2 \cdot m_{1}\right) \cdot\left(e_{2}+(q+1) / 2 \cdot m_{2}\right)
\end{aligned}
$$

- This gives

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} 2 c_{1, i} c_{2, j} \cdot s_{i} s_{j}=e+m_{1} m_{2} \cdot(q+1) / 2 \quad(\bmod q)
$$

- for a new eroor $e=2 e_{1} e_{2}+m_{1} e_{2}+m_{2} e_{1}$
- Therefore $\mathbf{c}^{\prime}=\left(2 c_{1, i} \cdot c_{2, j}\right)_{i, j} \in \mathbb{Z}_{q}^{n^{2}}$ is a new LWE ciphertext
- for the secret-key $\mathbf{s}^{\prime}=\left(s_{i} \cdot s_{j}\right)_{i, j} \in \mathbb{Z}_{q}^{n^{2}}$

$$
\left\langle\mathbf{c}^{\prime}, \mathbf{s}^{\prime}\right\rangle=e+m_{1} m_{2} \cdot(q+1) / 2 \quad(\bmod q)
$$

- The bitsize of the noise has roughly doubled.
- We get a ciphertext with n^{2} components instead of n.
- We want to have a ciphertext with binary components only.
- We use binary decomposition. For any $0 \leq a, b<q$, we have, using $n_{q}=\left\lceil\log _{2} q\right\rceil$:

$$
\begin{aligned}
a \cdot b & =\sum_{i=0}^{n_{q}-1} a_{i} \cdot 2^{i} b \quad(\bmod q) \\
& =\langle\operatorname{BitDecomp}(a), \operatorname{PowerOf} 2(b)\rangle
\end{aligned}
$$

- $\operatorname{BitDecomp}(a)=\left(a_{0}, \ldots, a_{n_{q}-1}\right)$ and PowerOf2 $(b)=\left(b, 2^{1} b, \ldots, 2^{n_{q}-1} b\right)$.
- We extend BitDecomp and PowerOf2 to vectors, by concatenation
- New binary ciphertext from $\mathbf{c} \in \mathbb{Z}_{q}^{m}$ and $\mathbf{s} \in \mathbb{Z}_{q}^{m}$
- Let $\mathbf{c}^{\prime}=\operatorname{BitDecomp}(\mathbf{c})$, and $\mathbf{s}^{\prime}=$ PowerOf2(s)

$$
\left\langle\mathbf{c}^{\prime}, \mathbf{s}^{\prime}\right\rangle=\langle\text { BitDecomp }(\mathbf{c}), \text { PowerOf2 }(\mathbf{s})\rangle=\langle\mathbf{c}, \mathbf{s}\rangle
$$

- The new binary ciphertext \mathbf{c}^{\prime} encrypts the same message under the new secret-key \mathbf{s}^{\prime}.

Key switching

- How to switch keys ?
- Start with a binary ciphertext $\mathbf{c} \in\{0,1\}^{m}$ under key $\mathbf{s} \in \mathbb{Z}_{q}^{m}$.
- We write $u=\langle\mathbf{c}, \mathbf{s}\rangle=\sum_{i=1}^{m} c_{i} \cdot s_{i}(\bmod q)$
- Let $\mathbf{s}^{\prime} \in \mathbb{Z}_{q}^{n}$ be another key.
- We consider LWE pseudo-encryptions \mathbf{t}_{i} of each s_{i} under the new key \mathbf{s}^{\prime}, with $\left\langle\mathbf{t}_{i}, \mathbf{s}^{\prime}\right\rangle=f_{i}+s_{i}(\bmod q)$ for small errors f_{i}.
- Generating the new ciphertext under \mathbf{s}^{\prime}
- We can write:

$$
u=\sum_{i=1}^{m} c_{i}\left(\left\langle\mathbf{t}_{i}, \mathbf{s}^{\prime}\right\rangle-f_{i}\right)=\left\langle\sum_{i=1}^{m} c_{i} \mathbf{t}_{i}, \mathbf{s}^{\prime}\right\rangle-\sum_{i=1}^{m} c_{i} \cdot f_{i} \quad(\bmod q)
$$

- We can define a new ciphertext $\mathbf{c}^{\prime}=\sum_{i=1}^{m} c_{i} \mathbf{t}_{i}(\bmod q)$ and we get for a small error f :

$$
\left\langle\mathbf{c}^{\prime}, \mathbf{s}^{\prime}\right\rangle=\langle\mathbf{c}, \mathbf{s}\rangle+f \quad(\bmod q)
$$

- \Rightarrow the two ciphertexts encrypt the same message

Summary of homomorphic multiplication

- Homomorphic multiplication of two ciphertexts has 3 steps:
- 1) Tensor product
- We obtain a ciphertext in $\mathbb{Z}_{q}^{n^{2}}$, under a new key $\mathbf{s} \times \mathbf{s}$.
- 2) Binary decomposition
- We obtain a binary ciphertext in $\{0,1\}^{n^{2} \cdot n_{q}}$, under a new key $\mathbf{s}^{\prime}=$ PowerOfTwo(s $\times \mathbf{s}$), with $n_{q}=\left\lceil\log _{2} q\right\rceil$
- 3) Key switching
- We switch the key from s' back to the original key s.

Modulus switching

- Consider a ciphertext modulo q

$$
\begin{aligned}
\langle\mathbf{c}, \mathbf{s}\rangle & =\lfloor q / 2\rfloor \cdot m+e \quad(\bmod q) \\
& =q / 2 \cdot m+\varepsilon+e+\lambda \cdot q
\end{aligned}
$$

- for $|\varepsilon| \leq 1 / 2$ and $\lambda \in \mathbb{Z}$
- Switching to a ciphertext modulo $p<q$

$$
\left\langle\mathbf{c} \cdot \frac{p}{q}, \mathbf{s}\right\rangle=p / 2 \cdot m+\varepsilon \cdot \frac{p}{q}+e \cdot \frac{p}{q}+\lambda \cdot p
$$

- Write $\mathbf{c}^{\prime}=\lfloor\mathbf{c} \cdot p / q\rceil=\mathbf{c} \cdot p / q+\mathbf{u}$ where $\|\mathbf{u}\|_{\infty} \leq 1 / 2$. Then

$$
\left\langle\mathbf{c}^{\prime}, \mathbf{s}\right\rangle=\lfloor p / 2\rceil \cdot m+e^{\prime} \quad(\bmod p)
$$

- where $\left|e^{\prime}\right| \leq e \cdot p / q+1+\frac{1}{2} \cdot\|\mathbf{s}\|_{1}$
- We get a new ciphertext \mathbf{c}^{\prime} modulo p encrypting the same m
- with scaled error $e^{\prime} \simeq e \cdot p / q$.
- Modulus switching from \mathbf{c} modulo q to \mathbf{c}^{\prime} modulo $p<q$
- Encrypts the same message m, but with error scaled by p / q
- Application: reducing noise growth. Assume $p / q=2^{-\rho}$.

- Noise reduction without bootstrapping !

Leveled fully homomorphic encryption

- Previous model: exponential growth of noise

- Only bootstrapping can give FHE
- New model: modulus switching after each multiplication layer - with a ladder of moduli p_{i} such that $p_{i+1} / p_{i}=2^{-\rho}$

- Leveled FHE
- Size of p_{1} linear in the circuit depth
- Parameters depend on the depth
- Can accommodate polynomial depth

Leveled fully homomorphic encryption

- Previous model: exponential growth of noise

- Only bootstrapping can give FHE
- New model: modulus switching after each multiplication layer - with a ladder of moduli p_{i} such that $p_{i+1} / p_{i}=2^{-\rho}$

- Leveled FHE
- Size of p_{1} linear in the circuit depth
- Parameters depend on the depth
- Can accommodate polynomial depth

Leveled fully homomorphic encryption

- Previous model: exponential growth of noise

- Only bootstrapping can give FHE
- New model: modulus switching after each multiplication layer
- with a ladder of moduli p_{i} such that $p_{i+1} / p_{i}=2^{-\rho}$

- Leveled FHE
- Size of p_{1} linear in the circuit depth
- Parameters depend on the depth
- Can accommodate polynomial depth

Gentry's technique to get fully homomorphic encryption

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
- Only a polynomial f of small degree can computed homomorphically, for $\mathcal{F}=\left\{f\left(b_{1}, \ldots, b_{t}\right): \operatorname{deg} f \leq d\right\}$
- $V_{p k}\left(f, E_{p k}\left(b_{1}\right), \ldots, E_{p k}\left(b_{t}\right)\right) \rightarrow E_{p k}\left(f\left(b_{1}, \ldots, b_{t}\right)\right)$

Ciphertexts

$$
\mathcal{C}^{t} \xrightarrow{V_{p k}(f, \cdots)} \mathcal{C}
$$

Plaintexts

Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
- Evaluate the decryption polynomial not on the bits of the ciphertext c and the secret key $s k$, but homomorphically on the encryption of those bits.

Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
- Instead of recovering the bit plaintext m, one gets an encryption of this bit plaintext, i.e. yet another ciphertext for the same plaintext.

Ciphertext refresh

- Refreshed ciphertext:
- If the degree of the decryption polynomial $D(\cdot, \cdot)$ is small enough, the resulting noise in the new ciphertext can be smaller than in the original ciphertext.

Fully homomorphic encryption

- Fully homomorphic encryption
- Using this "ciphertext refresh" procedure, the number of homomorphic operations becomes unlimited
- We get a fully homomorphic encryption scheme.

Bootstrapping LWE ciphertexts

- Building the decryption circuit
- Takes as input the bits of the ciphertext, and the bits of the secret-key.
- Outputs the decrypted message $m \in\{0,1\}$

- Easier to switch to encryption modulo 2^{k}, instead of q
- We perform a modulus switching to modulo 2^{k} using previous technique.

Building the decryption circuit

- First step: modulus switching to modulo 2^{k}
- Let $\mathbf{c} \in \mathbb{Z}_{q}^{n}$ such that

$$
\langle\mathbf{c}, \mathbf{s}\rangle=e+m \cdot(q+1) / 2 \quad(\bmod q)
$$

- From the previous modulus switching technique, we get

$$
\left\langle\mathbf{c}^{\prime}, \mathbf{s}\right\rangle=2^{k-1} \cdot m+e^{\prime} \quad\left(\bmod 2^{k}\right)
$$

- where $\left|e^{\prime}\right| \leq e \cdot 2^{k} / q+1+n / 2$.
- For correct decryption, we should have $\left|e^{\prime}\right| \leq 2^{k-2}$.
- Therefore we can take $k=\mathcal{O}(\log n)$.
- Second step: write the decryption circuit
- Using only Xor and And gates
- Starting from addition of two integers modulo 2^{k}.

Building the decryption circuit (2)

- We now have a ciphertext $\mathbf{c} \in \mathbb{Z}_{2^{k}}^{n}$ such that:

$$
\langle\mathbf{c}, \mathbf{s}\rangle=\sum_{i=1}^{n} c_{i} \cdot s_{i}=2^{k-1} \cdot m+e \quad\left(\bmod 2^{k}\right)
$$

- We want to write this operation with Xor and And gates only.
- 3 operations to compute with Xor and And gates:
- Computing $c_{i} \cdot s_{i}$ with $c_{i} \in \mathbb{Z}_{2^{k}}$ and $s_{i} \in\{0,1\}$
- We compute a And between each the k bits of c_{i} and s_{i}.
- Computing $a+b$ from $a, b \in \mathbb{Z}_{2^{k}}$
- We use schoolbook addition, propagating the carry.
- Extracting $m \in\{0,1\}$ from $a=2^{k-1} \cdot m+e$ with $|e|<2^{k-2}$.
- m is the xor of the most significant and second most significant bit of a

Bootstrapping achieved

- Bootstrapping
- We perform the same operations as above, but homomorphically
- Using an encryption of the secret-key bits

- Refreshed ciphertext \mathbf{c}^{\prime}
- The noise of \mathbf{c}^{\prime} only depends on the depth of the decryption circuit, not on the initial noise of \mathbf{c}.
- Homomorphic encryption with matrices [GSW13]
- Ciphertexts are square matrices instead of vectors
- Homomorphism: $\delta(\mathbf{C , v})=\mu$ where μ is eigenvalue for secret eigenvector v
- Homomorphically add and multiply ciphertext using (roughly) matrix addition and multiplication

Ciphertexts

$$
\mathbb{Z}^{N \times N} \times \mathbb{Z}^{N \times N} \xrightarrow{+, \times} \mathbb{Z}^{N \times N}
$$

- One must add some noise, otherwise
broken by linear algebra
- $\mathbf{C} \cdot \mathbf{v}=\mu \cdot \mathbf{v}+\mathbf{e}(\bmod \mathbf{c})$
- for message $\mu \in \mathbb{Z}$, for some small
noise \mathbf{e}.
- Security based on LWE problem.
- Homomorphic encryption with matrices [GSW13]
- Ciphertexts are square matrices instead of vectors
- Homomorphism: $\delta(C, \mathbf{v})=\mu$ where μ is eigenvalue for secret eigenvector v
- Homomorphically add and multiply ciphertext using (roughly) matrix addition and multiplication

Ciphertexts

Plaintexts

- One must add some noise, otherwise broken by linear algebra
- $C \cdot \mathbf{v}=\mu \cdot \mathbf{v}+\mathbf{e}(\bmod q)$
- for message $\mu \in \mathbb{Z}$, for some small noise e.
- Security based on LWE problem.

Ciphertext matrices: slow noise growth

- Noise grow of ciphertext multiplication [GSW13]:
- $C_{1} \cdot \mathbf{v}=\mu_{1} \cdot \mathbf{v}+\mathbf{e}_{1}(\bmod q), \quad C_{2} \cdot \mathbf{v}=\mu_{2} \cdot \mathbf{v}+\mathbf{e}_{2}(\bmod q)$
- $\left(C_{1} \cdot C_{2}\right) \cdot \mathbf{v}=C_{1} \cdot\left(\mu_{2} \cdot \mathbf{v}+\mathbf{e}_{2}\right)=\left(\mu_{2} \cdot \mu_{1}\right) \cdot \mathbf{v}+\mathbf{e}_{3}$
- with $\mathbf{e}_{3}=\mu_{2} \cdot \mathbf{e}_{1}+C_{1} \cdot \mathbf{e}_{2}$

- Slow noise growth

- Ensure $\mu_{i} \in\{0,1\}$, using only NAND gates $\mu_{3}=1-\mu_{1} \cdot \mu_{2}$
- Ciphertext flattening: ensure $C_{i} \in\{0,1\}^{N \times N}$, using binary decomposition and $\mathbf{v}=\left(s_{1}\right.$
- Leveled FHE
- At denth $L,\|e\| \infty \leq(N+1)^{L} \cdot B$
- One can take $q>8 \cdot B \cdot(N+1)^{L}$ and
accommodate polynomial depth L

Ciphertext matrices: slow noise growth

- Noise grow of ciphertext multiplication [GSW13]:
- $C_{1} \cdot \mathbf{v}=\mu_{1} \cdot \mathbf{v}+\mathbf{e}_{1}(\bmod q), \quad C_{2} \cdot \mathbf{v}=\mu_{2} \cdot \mathbf{v}+\mathbf{e}_{2}(\bmod q)$
- $\left(C_{1} \cdot C_{2}\right) \cdot \mathbf{v}=C_{1} \cdot\left(\mu_{2} \cdot \mathbf{v}+\mathbf{e}_{2}\right)=\left(\mu_{2} \cdot \mu_{1}\right) \cdot \mathbf{v}+\mathbf{e}_{3}$
- with $\mathbf{e}_{3}=\mu_{2} \cdot \mathbf{e}_{1}+C_{1} \cdot \mathbf{e}_{2}$
- Slow noise growth:
- Ensure $\mu_{i} \in\{0,1\}$, using only NAND gates $\mu_{3}=1-\mu_{1} \cdot \mu_{2}$
- Ciphertext flattening: ensure $C_{i} \in\{0,1\}^{N \times N}$, using binary decomposition and $\mathbf{v}=\left(s_{1}, \ldots, 2^{\ell} s_{1}, \ldots, s_{n}, \ldots, 2^{\ell} s_{n}\right)$.
- If $\left\|\mathbf{e}_{1}\right\|_{\infty} \leq B$ and $\left\|\mathbf{e}_{2}\right\|_{\infty} \leq B,\left\|\mathbf{e}_{3}\right\|_{\infty} \leq(N+1) \cdot B$
- Leveled FHE
- At depth $L,\|\mathbf{e}\|_{\infty} \leq(N+1)^{L} \cdot B$
- One can take $q>8 \cdot B \cdot(N+1)^{L}$ and accommodate polynomial depth L.

Ciphertext matrices: slow noise growth

- Noise grow of ciphertext multiplication [GSW13]:
- $C_{1} \cdot \mathbf{v}=\mu_{1} \cdot \mathbf{v}+\mathbf{e}_{1}(\bmod q), \quad C_{2} \cdot \mathbf{v}=\mu_{2} \cdot \mathbf{v}+\mathbf{e}_{2}(\bmod q)$
- $\left(C_{1} \cdot C_{2}\right) \cdot \mathbf{v}=C_{1} \cdot\left(\mu_{2} \cdot \mathbf{v}+\mathbf{e}_{2}\right)=\left(\mu_{2} \cdot \mu_{1}\right) \cdot \mathbf{v}+\mathbf{e}_{3}$
- with $\mathbf{e}_{3}=\mu_{2} \cdot \mathbf{e}_{1}+C_{1} \cdot \mathbf{e}_{2}$
- Slow noise growth:
- Ensure $\mu_{i} \in\{0,1\}$, using only NAND gates $\mu_{3}=1-\mu_{1} \cdot \mu_{2}$
- Ciphertext flattening: ensure $C_{i} \in\{0,1\}^{N \times N}$, using binary decomposition and $\mathbf{v}=\left(s_{1}, \ldots, 2^{\ell} s_{1}, \ldots, s_{n}, \ldots, 2^{\ell} s_{n}\right)$.
- If $\left\|\mathbf{e}_{1}\right\|_{\infty} \leq B$ and $\left\|\mathbf{e}_{2}\right\|_{\infty} \leq B,\left\|\mathbf{e}_{3}\right\|_{\infty} \leq(N+1) \cdot B$
- Leveled FHE
- At depth $L,\|\mathbf{e}\|_{\infty} \leq(N+1)^{L} \cdot B$
- One can take $q>8 \cdot B \cdot(N+1)^{L}$ and accommodate polynomial depth L.

Fourth generation: homomorphic encryption for approximate numbers

- Homomorphic encryption for real numbers [CKKS17]
- Floating point arithmetic, instead of exact arithmetic.
- Starting point: Regev's scheme.
- Homomorphism: $\delta: \mathbb{Z}_{q}[\mathbf{x}] \rightarrow \mathbb{Z}_{q}$ given by evaluation at \mathbf{s}

Ciphertexts

$$
\begin{gathered}
\mathbb{Z}_{\boldsymbol{q}}[\mathbf{x}] \times \mathbb{Z}_{\boldsymbol{q}}[\mathbf{x}] \xrightarrow{+, x} \mathbb{Z}_{\boldsymbol{q}}[\mathbf{x}] \\
\quad \downarrow_{\delta, \delta}^{+x}
\end{gathered}
$$

Plaintexts

- One must add some noise, otherwise broken by linear algebra.
- $f(\mathbf{s})=m+e \bmod q$, for small $e \in \mathbb{Z}_{q}$
- Noise only affects the low-order bits of
m : approximate computation, as in
floating point arithmetic.
- Application: neural networks.

Fourth generation: homomorphic encryption for approximate numbers

- Homomorphic encryption for real numbers [CKKS17]
- Floating point arithmetic, instead of exact arithmetic.
- Starting point: Regev's scheme.
- Homomorphism: $\delta: \mathbb{Z}_{q}[\mathbf{x}] \rightarrow \mathbb{Z}_{q}$ given by evaluation at \mathbf{s}

Ciphertexts

$$
\begin{aligned}
& \mathbb{Z}_{q}[\mathbf{x}] \times \mathbb{Z}_{q}[\mathbf{x}] \xrightarrow{+, \times} \mathbb{Z}_{q}[\mathbf{x}] \\
& \downarrow \delta, \delta \quad \downarrow
\end{aligned}
$$

Plaintexts

- One must add some noise, otherwise broken by linear algebra.
- $f(\mathbf{s})=m+e \bmod q$, for small $e \in \mathbb{Z}_{q}$
- Noise only affects the low-order bits of m : approximate computation, as in floating point arithmetic.
- Application: neural networks.

[CKKS17]: ciphertext multiplication and rescaling

- Ciphertext multiplication $c(\mathbf{x})=c_{1}(\mathbf{x}) \cdot c_{2}(\mathbf{x})$
- $c(\mathbf{s})=\left(m_{1}+e_{1}\right) \cdot\left(m_{2}+e_{2}\right)=m_{1} m_{2}+e^{\star}(\bmod q)$
- with $e^{\star}=m_{1} e_{2}+e_{1} m_{2}+e_{1} e_{2}$.
- Rescaling of ciphertext:
- $c^{\prime}(\mathbf{x})=\lfloor\mathbf{c}(x) / p\rceil(\bmod q / p)$
- Valid encryption of $\lfloor m / p\rceil$ with noise $\simeq e / p$
- Similar to modulus switching

Conclusion

- Main challenge: make FHE pratical !
- New primitives
- Libraries (HElib)
- Compiler to homomorphic evaluation
- Applications
- Homomorphic machine learning: evaluate a neural network without revealing the weights.
- Genome-wide association studies: linear regression, logistic regression.

BGV11 Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. Fully Homomorphic Encryption without Bootstrapping. Electron. Colloquium Comput. Complex. 18: 111 (2011)
CKKS17 Jung Hee Cheon, Andrey Kim, Miran Kim, Yong Soo Song. Homomorphic Encryption for Arithmetic of Approximate Numbers. ASIACRYPT (1) 2017: 409-437
GSW13 Craig Gentry, Amit Sahai, Brent Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. CRYPTO (1) 2013: 75-92
Gen09 Craig Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009: 169-178
R05 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005: 84-93

