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Overview

Previous lecture: basic techniques for fully homomorphic
encryption

First generation of FHE, the DGHV scheme
Overview of bootstrapping
LWE-based encryption. Relinearization for ciphertext
multiplication

This lecture: leveled FHE, bootstrapping

Modulus switching
Leveled FHE
Bootstrapping
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Four generations of FHE

First generation: bootstrapping, slow

Breakthrough scheme of Gentry [G09], based on ideal lattices.
FHE over the integers: [DGHV10]

Second generation: [BV11], [BGV11]

More efficient, (R)LWE based. Relinearization, depth-linear
construction with modulus switching.

Third generation [GSW13]

No modulus switching, slow noise growth
Improved bootstrapping: [BV14], [AP14]

Fourth gen: [CKKS17]

Approximate floating point arithmetic
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Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[x⃗ ]→ Zq[x ] given by evaluation at
secret s⃗ = (s1, . . . , sn)

Ciphertexts Zq[x⃗ ]× Zq[x⃗ ] Zq[x⃗ ]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (s⃗) = 2e +m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (x⃗) with
|fi (s⃗) mod q| ≪ q are comp. indist.
from random fi (x⃗) modulo q.
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LWE-based encryption [R05]

Key generation
Secret-key: s ∈ (Zq)

n

Encryption of m ∈ {0, 1}
A vector c ∈ Fq such that

⟨c, s⟩ = 2e +m (mod q)

for a small error e.

· =

c

s

2e +m

Distribution of the error e
One can take the centered binomial distribution χ with
parameter κ.
Let e = h(u)− h(v) where u, v ← {0, 1}κ, where h is the
Hamming weight function.

Decryption
Compute m = (c · s mod q) mod 2
Decryption works if |e| < q/4
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LWE-based encryption: alternative encoding

The message m can also be encoded in the MSB.

Encryption of m ∈ {0, 1}
A vector c ∈ Fq such that

⟨c, s⟩ = e +m · ⌊q/2⌋ (mod q)

· =

c

s

e +m · ⌊q/2⌋

Decryption

Compute m = th(⟨c, s⟩ mod q)
where th(x) = 1 if x ∈ (q/4, 3q/4), and 0 otherwise.

0

q/4

q/2

3q/4
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LWE-based public-key encryption

Key generation

Secret-key: s ∈ (Zq)
n, with s1 = 1.

Public-key: A such that A · s = e for small e

Every row of A is an LWE encryption of 0.

Encryption of m ∈ {0, 1}
c = u · A+ (m · ⌊q/2⌉, 0, . . . , 0)

for a small u

· +
⌊q
2

⌉
· =m 0 0

u

A

c

Decryption

Compute m = th(⟨c, s⟩ mod q)
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Homomorphic addition

LWE ciphertexts can be added

with a small increase in the noise

⟨c1, s⟩ = e1 +m1 · (q + 1)/2 (mod q)

⟨c2, s⟩ = e2 +m2 · (q + 1)/2 (mod q)

⟨c1 + c2, s⟩ = e1 + e2 + (m1 +m2) · (q + 1)/2 (mod q)
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Homomorphic multiplication

Homomorphic multiplication of two ciphertexts is more
complex, with 3 steps:

1) Tensor product

We obtain a ciphertext in Zn2

q , under a new key s× s.

2) Binary decomposition

We obtain a binary ciphertext in {0, 1}n
2·nq , under a new key

s′ = PowerOfTwo(s× s), with nq = ⌈log2 q⌉
3) Key switching

We switch the key from s′ back to the original key s.
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Tensor product

LWE ciphertexts can be multiplied by tensor product.

2⟨c1, s⟩ · ⟨c2, s⟩ = 2

(
n∑

i=1

c1,i si

)(
n∑

i=1

c2,i si

)
= 2(e1 + (q + 1)/2 ·m1) · (e2 + (q + 1)/2 ·m2)

This gives

n∑
i=1

n∑
j=1

2c1,ic2,j · si sj = e +m1m2 · (q + 1)/2 (mod q)

for a new eroor e = 2e1e2 +m1e2 +m2e1
Therefore c′ = (2c1,i · c2,j)i ,j ∈ Zn2

q is a new LWE ciphertext

for the secret-key s′ = (si · sj)i,j ∈ Zn2

q

⟨c′, s′⟩ = e +m1m2 · (q + 1)/2 (mod q)

The bitsize of the noise has roughly doubled.
We get a ciphertext with n2 components instead of n.
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Binary decomposition

We want to have a ciphertext with binary components only.

We use binary decomposition. For any 0 ≤ a, b < q, we have,
using nq = ⌈log2 q⌉:

a · b =

nq−1∑
i=0

ai · 2ib (mod q)

= ⟨BitDecomp(a),PowerOf2(b)⟩
BitDecomp(a) = (a0, . . . , anq−1) and
PowerOf2(b) = (b, 21b, . . . , 2nq−1b).
We extend BitDecomp and PowerOf2 to vectors, by
concatenation

New binary ciphertext from c ∈ Zm
q and s ∈ Zm

q

Let c′ = BitDecomp(c), and s′ = PowerOf2(s)

⟨c′, s′⟩ = ⟨BitDecomp(c),PowerOf2(s)⟩ = ⟨c, s⟩

The new binary ciphertext c′ encrypts the same message under
the new secret-key s′.
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Key switching

How to switch keys ?
Start with a binary ciphertext c ∈ {0, 1}m under key s ∈ Zm

q .

We write u = ⟨c, s⟩ =
m∑
i=1

ci · si (mod q)

Let s′ ∈ Zn
q be another key.

We consider LWE pseudo-encryptions ti of each si under the
new key s′, with ⟨ti , s′⟩ = fi + si (mod q) for small errors fi .

Generating the new ciphertext under s′

We can write:

u =
m∑
i=1

ci (⟨ti , s′⟩ − fi ) =

〈
m∑
i=1

citi , s
′

〉
−

m∑
i=1

ci · fi (mod q)

We can define a new ciphertext c′ =
m∑
i=1

citi (mod q) and we

get for a small error f :

⟨c′, s′⟩ = ⟨c, s⟩+ f (mod q)

⇒ the two ciphertexts encrypt the same message
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Summary of homomorphic multiplication

Homomorphic multiplication of two ciphertexts has 3 steps:
1) Tensor product

We obtain a ciphertext in Zn2

q , under a new key s× s.

2) Binary decomposition

We obtain a binary ciphertext in {0, 1}n
2·nq , under a new key

s′ = PowerOfTwo(s× s), with nq = ⌈log2 q⌉
3) Key switching

We switch the key from s′ back to the original key s.
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Modulus switching

Consider a ciphertext modulo q

⟨c, s⟩ = ⌊q/2⌋ ·m + e (mod q)

= q/2 ·m + ε+ e + λ · q
for |ε| ≤ 1/2 and λ ∈ Z

Switching to a ciphertext modulo p < q

⟨c · p
q
, s⟩ = p/2 ·m + ε · p

q
+ e · p

q
+ λ · p

Write c′ = ⌊c · p/q⌉ = c · p/q + u where ∥u∥∞ ≤ 1/2. Then

⟨c′, s⟩ = ⌊p/2⌉ ·m + e′ (mod p)

where |e′| ≤ e · p/q + 1 + 1
2 · ∥s∥1

We get a new ciphertext c′ modulo p encrypting the same m

with scaled error e′ ≃ e · p/q.
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The BGV scheme: modulus switching [BGV11]

Modulus switching from c modulo q to c′ modulo p < q

Encrypts the same message m, but with error scaled by p/q

Application: reducing noise growth. Assume p/q = 2−ρ.

ρ

q

2ρ

q

ρ

p

× p/q

Noise reduction without bootstrapping !
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Leveled fully homomorphic encryption

Previous model: exponential growth of noise

ρ

q

2ρ

q

4ρ

q

8ρ

q

× × ×

Only bootstrapping can give FHE

New model: modulus switching after each multiplication layer

with a ladder of moduli pi such that pi+1/pi = 2−ρ

ρ

p1

2ρ

p1

ρ

p2

2ρ

p2

ρ

p3

2ρ

p3

ρ

p4

2ρ

p4
× S × S × S ×

Leveled FHE

Size of p1 linear in the circuit depth
Parameters depend on the depth
Can accommodate polynomial depth
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Gentry’s technique to get fully homomorphic encryption

To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

Only a polynomial f of small degree can computed
homomorphically, for F = {f (b1, . . . , bt) : deg f ≤ d}
Vpk(f ,Epk(b1), . . . ,Epk(bt))→ Epk(f (b1, . . . , bt))

Ciphertexts Ct C

Plaintexts (Z2)
t Z2

Vpk (f ,···)

Dsk (··· ) Dsk (·)

f

f ∈ F
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Ciphertext refresh: bootstrapping

Gentry’s breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

Evaluate the decryption polynomial not on the bits of the
ciphertext c and the secret key sk , but homomorphically on
the encryption of those bits.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption
Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:
refreshed
ciphertext
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Ciphertext refresh

Refreshed ciphertext:

If the degree of the decryption polynomial D(·, ·) is small
enough, the resulting noise in the new ciphertext can be
smaller than in the original ciphertext.

C

Refresh

C ⋆
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Fully homomorphic encryption

Fully homomorphic encryption

Using this “ciphertext refresh” procedure, the number of
homomorphic operations becomes unlimited
We get a fully homomorphic encryption scheme.

Refresh Refresh

×
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Bootstrapping LWE ciphertexts

Building the decryption circuit

Takes as input the bits of the ciphertext, and the bits of the
secret-key.
Outputs the decrypted message m ∈ {0, 1}

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

Easier to switch to encryption modulo 2k , instead of q

We perform a modulus switching to modulo 2k using previous
technique.
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Building the decryption circuit

First step: modulus switching to modulo 2k

Let c ∈ Zn
q such that

⟨c, s⟩ = e +m · (q + 1)/2 (mod q)

From the previous modulus switching technique, we get

⟨c′, s⟩ = 2k−1 ·m + e′ (mod 2k)

where |e′| ≤ e · 2k/q + 1 + n/2.
For correct decryption, we should have |e′| ≤ 2k−2.
Therefore we can take k = O(log n).

Second step: write the decryption circuit

Using only Xor and And gates
Starting from addition of two integers modulo 2k .
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Building the decryption circuit (2)

We now have a ciphertext c ∈ Zn
2k

such that:

⟨c, s⟩ =
n∑

i=1

ci · si = 2k−1 ·m + e (mod 2k)

We want to write this operation with Xor and And gates only.

3 operations to compute with Xor and And gates:
Computing ci · si with ci ∈ Z2k and si ∈ {0, 1}

We compute a And between each the k bits of ci and si .

Computing a+ b from a, b ∈ Z2k

We use schoolbook addition, propagating the carry.

Extracting m ∈ {0, 1} from a = 2k−1 ·m + e with |e| < 2k−2.

m is the xor of the most significant and second most
significant bit of a
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Bootstrapping achieved

Bootstrapping

We perform the same operations as above, but
homomorphically
Using an encryption of the secret-key bits

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption
Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:
refreshed
ciphertext

Refreshed ciphertext c′

The noise of c′ only depends on the depth of the decryption
circuit, not on the initial noise of c.
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Third generation of FHE: ciphertext matrices

Homomorphic encryption with matrices [GSW13]

Ciphertexts are square matrices instead of vectors
Homomorphism: δ(C , v) = µ where µ is eigenvalue for secret
eigenvector v
Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZN×N × ZN×N ZN×N

Plaintexts Z× Z Z

+,×

δ,δ δ

+,×

One must add some noise, otherwise
broken by linear algebra

C · v = µ · v + e (mod q)
for message µ ∈ Z, for some small
noise e.
Security based on LWE problem.
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Ciphertext matrices: slow noise growth

Noise grow of ciphertext multiplication [GSW13]:

C1 · v = µ1 · v + e1 (mod q), C2 · v = µ2 · v + e2 (mod q)
(C1 · C2) · v = C1 · (µ2 · v + e2) = (µ2 · µ1) · v + e3
with e3 = µ2 · e1 + C1 · e2

Slow noise growth:

Ensure µi ∈ {0, 1}, using only NAND gates µ3 = 1− µ1 · µ2

Ciphertext flattening: ensure Ci ∈ {0, 1}N×N , using binary
decomposition and v = (s1, . . . , 2

ℓs1, . . . , sn, . . . , 2
ℓsn).

If ∥e1∥∞ ≤ B and ∥e2∥∞ ≤ B, ∥e3∥∞ ≤ (N + 1) · B
Leveled FHE

At depth L, ∥e∥∞ ≤ (N + 1)L · B
One can take q > 8 · B · (N + 1)L and
accommodate polynomial depth L.
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Fourth generation: homomorphic encryption for
approximate numbers

Homomorphic encryption for real numbers [CKKS17]

Floating point arithmetic, instead of exact arithmetic.
Starting point: Regev’s scheme.
Homomorphism: δ : Zq[x]→ Zq given by evaluation at s

Ciphertexts Zq[x]× Zq[x] Zq[x]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (s) = m + e mod q, for small e ∈ Zq

Noise only affects the low-order bits of
m: approximate computation, as in
floating point arithmetic.
Application: neural networks.
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[CKKS17]: ciphertext multiplication and rescaling

Ciphertext multiplication c(x) = c1(x) · c2(x)
c(s) = (m1 + e1) · (m2 + e2) = m1m2 + e⋆ (mod q)
with e⋆ = m1e2 + e1m2 + e1e2.

Rescaling of ciphertext:

c ′(x) = ⌊c(x)/p⌉ (mod q/p)
Valid encryption of ⌊m/p⌉ with noise ≃ e/p
Similar to modulus switching

e1q

m1

e2q

m2

×

e⋆q

m1m2

e ′q/p

m1m2/p
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Conclusion

Main challenge: make FHE pratical !

New primitives
Libraries (HElib)
Compiler to homomorphic evaluation

Applications

Homomorphic machine learning: evaluate a neural network
without revealing the weights.
Genome-wide association studies: linear regression, logistic
regression.
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