Introduction to Fully Homomorphic Encryption Part 2: leveled FHE and bootstrapping

Jean-Sébastien Coron

University of Luxembourg

- Previous lecture: basic techniques for fully homomorphic encryption
 - First generation of FHE, the DGHV scheme
 - Overview of bootstrapping
 - LWE-based encryption. Relinearization for ciphertext multiplication
- This lecture: leveled FHE, bootstrapping
 - Modulus switching
 - Leveled FHE
 - Bootstrapping

• • = • • = •

Four generations of FHE

- First generation: bootstrapping, slow
 - Breakthrough scheme of Gentry [G09], based on ideal lattices.
 - FHE over the integers: [DGHV10]
- Second generation: [BV11], [BGV11]
 - More efficient, (R)LWE based. Relinearization, depth-linear construction with modulus switching.
- Third generation [GSW13]
 - No modulus switching, slow noise growth
 - Improved bootstrapping: [BV14], [AP14]
- Fourth gen: [CKKS17]
 - Approximate floating point arithmetic

.

Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
 - Homomorphism: $\delta : \mathbb{Z}_q[\vec{x}] \to \mathbb{Z}_q[x]$ given by evaluation at secret $\vec{s} = (s_1, \dots, s_n)$

- One must add some noise, otherwise broken by linear algebra.
 f(s) = 2e + m mod q, for some small noise e ∈ Z_q
- LWE assumption [R05]
 - Linear polynomials $f_i(\vec{x})$ with $|f_i(\vec{s}) \mod q| \ll q$ are comp. indist. from random $f_i(\vec{x}) \mod q$.

(b) a (B) b (a (B) b)

Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
 - Homomorphism: $\delta : \mathbb{Z}_q[\vec{x}] \to \mathbb{Z}_q[x]$ given by evaluation at secret $\vec{s} = (s_1, \dots, s_n)$

Ciphertexts $\mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+,\times} \mathbb{Z}_{q}[\vec{x}]$ $\downarrow^{\delta,\delta} \qquad \qquad \downarrow^{\delta}$ Plaintexts $\mathbb{Z}_{q} \times \mathbb{Z}_{q} \xrightarrow{+,\times} \mathbb{Z}_{q}$

• One must add some noise, otherwise broken by linear algebra.

• $f(\vec{s}) = 2e + m \mod q$, for some small noise $e \in \mathbb{Z}_q$

- LWE assumption [R05]
 - Linear polynomials $f_i(\vec{x})$ with $|f_i(\vec{s}) \mod q| \ll q$ are comp. indist. from random $f_i(\vec{x}) \mod q$.

通 ト イ ヨ ト イ ヨ ト

Second generation: LWE-based encryption

- Homomorphic encryption based on polynomial evaluation
 - Homomorphism: $\delta : \mathbb{Z}_q[\vec{x}] \to \mathbb{Z}_q[x]$ given by evaluation at secret $\vec{s} = (s_1, \dots, s_n)$

Ciphertexts $\mathbb{Z}_{q}[\vec{x}] \times \mathbb{Z}_{q}[\vec{x}] \xrightarrow{+,\times} \mathbb{Z}_{q}[\vec{x}]$ $\downarrow^{\delta,\delta} \qquad \qquad \downarrow^{\delta}$ Plaintexts $\mathbb{Z}_{q} \times \mathbb{Z}_{q} \xrightarrow{+,\times} \mathbb{Z}_{q}$

• One must add some noise, otherwise broken by linear algebra.

• $f(\vec{s}) = 2e + m \mod q$, for some small noise $e \in \mathbb{Z}_q$

- LWE assumption [R05]
 - Linear polynomials $f_i(\vec{x})$ with $|f_i(\vec{s}) \mod q| \ll q$ are comp. indist. from random $f_i(\vec{x}) \mod q$.

LWE-based encryption [R05]

- Key generation
 - Secret-key: $\mathbf{s} \in (\mathbb{Z}_q)^n$
- Encryption of $m \in \{0,1\}$
 - A vector $\mathbf{c} \in \mathbb{F}_q$ such that

- Distribution of the error *e*
 - One can take the centered binomial distribution χ with parameter $\kappa.$
 - Let e = h(u) h(v) where $u, v \leftarrow \{0, 1\}^{\kappa}$, where h is the Hamming weight function.
- Decryption
 - Compute $m = (\mathbf{c} \cdot \mathbf{s} \mod q) \mod 2$
 - Decryption works if |e| < q/4

LWE-based encryption [R05]

- Key generation
 - Secret-key: $\mathbf{s} \in (\mathbb{Z}_q)^n$
- Encryption of $m \in \{0,1\}$
 - A vector $\mathbf{c} \in \mathbb{F}_q$ such that

- Distribution of the error e
 - One can take the centered binomial distribution χ with parameter $\kappa.$
 - Let e = h(u) h(v) where $u, v \leftarrow \{0, 1\}^{\kappa}$, where h is the Hamming weight function.
- Decryption
 - Compute $m = (\mathbf{c} \cdot \mathbf{s} \mod q) \mod 2$
 - Decryption works if |e| < q/4

LWE-based encryption: alternative encoding

• The message *m* can also be encoded in the MSB.

1

- Encryption of $m \in \{0, 1\}$
 - A vector $\mathbf{c} \in \mathbb{F}_{q}$ such that

$$\langle \mathbf{c}, \mathbf{s} \rangle = e + m \cdot \lfloor q/2 \rfloor \pmod{q}$$

 $\mathbf{c} \quad \mathbf{c} \quad \mathbf$

Decryption

- Compute $m = th(\langle \mathbf{c}, \mathbf{s} \rangle \mod q)$
- where th(x) = 1 if $x \in (q/4, 3q/4)$, and 0 otherwise.

LWE-based public-key encryption

- Key generation
 - Secret-key: $\mathbf{s} \in (\mathbb{Z}_q)^n$, with $s_1 = 1$.
 - Public-key: A such that $\textbf{A} \cdot \textbf{s} = \textbf{e}$ for small e
 - Every row of **A** is an LWE encryption of 0.
- Encryption of $m \in \{0,1\}$

$$\mathbf{c} = \mathbf{u} \cdot \mathbf{A} + (m \cdot \lfloor q/2 \rceil, 0, \dots, 0)$$

• for a small **u**

• Compute $m = th(\langle \mathbf{c}, \mathbf{s} \rangle \mod q)$

• LWE ciphertexts can be added

• with a small increase in the noise

$$\langle \mathbf{c}_1, \mathbf{s}
angle = e_1 + m_1 \cdot (q+1)/2 \pmod{q}$$

 $\langle \mathbf{c}_2, \mathbf{s}
angle = e_2 + m_2 \cdot (q+1)/2 \pmod{q}$
 $\langle \mathbf{c}_1 + \mathbf{c}_2, \mathbf{s}
angle = e_1 + e_2 + (m_1 + m_2) \cdot (q+1)/2 \pmod{q}$

3 🕨 🖌 3

- Homomorphic multiplication of two ciphertexts is more complex, with 3 steps:
 - 1) Tensor product
 - We obtain a ciphertext in $\mathbb{Z}_q^{n^2}$, under a new key $\mathbf{s} \times \mathbf{s}$.
 - 2) Binary decomposition
 - We obtain a binary ciphertext in $\{0,1\}^{n^2 \cdot n_q}$, under a new key $\mathbf{s}' = \text{PowerOfTwo}(\mathbf{s} \times \mathbf{s})$, with $n_q = \lceil \log_2 q \rceil$
 - 3) Key switching
 - We switch the key from s' back to the original key s.

Tensor product

• LWE ciphertexts can be multiplied by tensor product.

$$2\langle \mathbf{c}_1, \mathbf{s} \rangle \cdot \langle \mathbf{c}_2, \mathbf{s} \rangle = 2\left(\sum_{i=1}^n c_{1,i} s_i\right) \left(\sum_{i=1}^n c_{2,i} s_i\right)$$
$$= 2(e_1 + (q+1)/2 \cdot m_1) \cdot (e_2 + (q+1)/2 \cdot m_2)$$

This gives

$$\sum_{i=1}^{n} \sum_{j=1}^{n} 2c_{1,i}c_{2,j} \cdot s_i s_j = e + m_1 m_2 \cdot (q+1)/2 \pmod{q}$$

• for a new eroor $e = 2e_1e_2 + m_1e_2 + m_2e_1$ • Therefore $\mathbf{c}' = (2c_{1,i} \cdot c_{2,j})_{i,j} \in \mathbb{Z}_q^{n^2}$ is a new LWE ciphertext • for the secret-key $\mathbf{s}' = (s_i \cdot s_i)_{i,i} \in \mathbb{Z}_q^{n^2}$

$$\langle \mathbf{c}', \mathbf{s}'
angle = e + m_1 m_2 \cdot (q+1)/2 \pmod{q}$$

• The bitsize of the noise has roughly doubled.

• We get a ciphertext with n^2 components instead of n.

Binary decomposition

- We want to have a ciphertext with binary components only.
 - We use binary decomposition. For any $0 \le a, b < q$, we have, using $n_q = \lceil \log_2 q \rceil$:

$$a \cdot b = \sum_{i=0}^{n_q-1} a_i \cdot 2^i b \pmod{q}$$

= $\langle \operatorname{BitDecomp}(a), \operatorname{PowerOf2}(b) \rangle$

- BitDecomp $(a) = (a_0, \dots, a_{n_q-1})$ and PowerOf2 $(b) = (b, 2^1b, \dots, 2^{n_q-1}b)$.
- We extend BitDecomp and PowerOf2 to vectors, by concatenation
- New binary ciphertext from $\mathbf{c} \in \mathbb{Z}_q^m$ and $\mathbf{s} \in \mathbb{Z}_q^m$
 - Let $\mathbf{c}' = \mathsf{BitDecomp}(\mathbf{c})$, and $\mathbf{s}' = \mathsf{PowerOf2}(\mathbf{s})$

$$\langle \mathbf{c}', \mathbf{s}' \rangle = \langle \mathsf{BitDecomp}(\mathbf{c}), \mathsf{PowerOf2}(\mathbf{s}) \rangle = \langle \mathbf{c}, \mathbf{s} \rangle$$

• The new binary ciphertext \mathbf{c}' encrypts the same message under the new secret-key $\mathbf{s}'.$

Key switching

- How to switch keys ?
 - Start with a binary ciphertext $\mathbf{c} \in \{0,1\}^m$ under key $\mathbf{s} \in \mathbb{Z}_q^m$.

• We write
$$u = \langle \mathbf{c}, \mathbf{s} \rangle = \sum_{i=1}^m c_i \cdot s_i \pmod{q}$$

- Let $\mathbf{s}' \in \mathbb{Z}_q^n$ be another key.
- We consider LWE pseudo-encryptions \mathbf{t}_i of each s_i under the new key \mathbf{s}' , with $\langle \mathbf{t}_i, \mathbf{s}' \rangle = f_i + s_i \pmod{q}$ for small errors f_i .
- Generating the new ciphertext under \mathbf{s}'
 - We can write:

$$u = \sum_{i=1}^{m} c_i \left(\langle \mathbf{t}_i, \mathbf{s}' \rangle - f_i \right) = \left\langle \sum_{i=1}^{m} c_i \mathbf{t}_i, \mathbf{s}' \right\rangle - \sum_{i=1}^{m} c_i \cdot f_i \pmod{q}$$

• We can define a new ciphertext $\mathbf{c}' = \sum_{i=1}^{m} c_i \mathbf{t}_i \pmod{q}$ and we get for a small error f:

$$\langle \mathbf{c}', \mathbf{s}'
angle = \langle \mathbf{c}, \mathbf{s}
angle + f \pmod{q}$$

 $\bullet\,\,\Rightarrow\,$ the two ciphertexts encrypt the same message

Summary of homomorphic multiplication

- Homomorphic multiplication of two ciphertexts has 3 steps:
 - 1) Tensor product
 - We obtain a ciphertext in $\mathbb{Z}_q^{n^2}$, under a new key $\mathbf{s} \times \mathbf{s}$.
 - 2) Binary decomposition
 - We obtain a binary ciphertext in $\{0,1\}^{n^2 \cdot n_q}$, under a new key $\mathbf{s}' = \text{PowerOfTwo}(\mathbf{s} \times \mathbf{s})$, with $n_q = \lceil \log_2 q \rceil$
 - 3) Key switching
 - $\bullet\,$ We switch the key from s' back to the original key s.

Modulus switching

• Consider a ciphertext modulo q

$$\langle \mathbf{c}, \mathbf{s}
angle = \lfloor q/2 \rfloor \cdot m + e \pmod{q}$$

= $q/2 \cdot m + \varepsilon + e + \lambda \cdot q$

• for $|arepsilon| \leq 1/2$ and $\lambda \in \mathbb{Z}$

• Switching to a ciphertext modulo p < q

$$\langle \mathbf{c} \cdot \frac{p}{q}, \mathbf{s} \rangle = p/2 \cdot m + \varepsilon \cdot \frac{p}{q} + e \cdot \frac{p}{q} + \lambda \cdot p$$

• Write $\mathbf{c}' = \lfloor \mathbf{c} \cdot p/q \rceil = \mathbf{c} \cdot p/q + \mathbf{u}$ where $\|\mathbf{u}\|_{\infty} \leq 1/2$. Then

$$\langle \mathbf{c}', \mathbf{s}
angle = \lfloor p/2
ceil \cdot m + e' \pmod{p}$$

• where $|e'| \leq e \cdot p/q + 1 + rac{1}{2} \cdot \|\mathbf{s}\|_1$

- We get a new ciphertext \mathbf{c}' modulo p encrypting the same m
 - with scaled error $e' \simeq e \cdot p/q$.

• • = • • = •

The BGV scheme: modulus switching [BGV11]

- Modulus switching from \mathbf{c} modulo q to \mathbf{c}' modulo p < q
 - Encrypts the same message m, but with error scaled by p/q
- Application: reducing noise growth. Assume $p/q = 2^{-\rho}$.

• Noise reduction without bootstrapping !

Leveled fully homomorphic encryption

• Previous model: exponential growth of noise

• Only bootstrapping can give FHE

New model: modulus switching after each multiplication layer
 with a ladder of moduli p_i such that p_{i+1}/p_i = 2^{-p}

- Leveled FHE
 - Size of *p*₁ linear in the circuit depth
 - Parameters depend on the depth
 - Can accommodate polynomial depth

Leveled fully homomorphic encryption

• Previous model: exponential growth of noise

- Only bootstrapping can give FHE
- New model: modulus switching after each multiplication layer
 - with a ladder of moduli p_i such that $p_{i+1}/p_i = 2^{-\rho}$

- Leveled FHE
 - Size of *p*₁ linear in the circuit depth
 - Parameters depend on the depth
 - Can accommodate polynomial depth

Leveled fully homomorphic encryption

• Previous model: exponential growth of noise

- Only bootstrapping can give FHE
- New model: modulus switching after each multiplication layer
 - with a ladder of moduli p_i such that $p_{i+1}/p_i = 2^{-\rho}$

- Leveled FHE
 - Size of p_1 linear in the circuit depth
 - Parameters depend on the depth
 - Can accommodate polynomial depth

Gentry's technique to get fully homomorphic encryption

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
 - Only a polynomial f of small degree can computed homomorphically, for F = {f(b₁,..., b_t) : deg f ≤ d}
 - $V_{pk}(f, E_{pk}(b_1), ..., E_{pk}(b_t)) \to E_{pk}(f(b_1, ..., b_t))$

Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
 - Evaluate the decryption polynomial not on the bits of the ciphertext *c* and the secret key *sk*, but homomorphically on the encryption of those bits.

イロト イポト イラト イラト

Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
 - Instead of recovering the bit plaintext *m*, one gets an encryption of this bit plaintext, *i.e.* yet another ciphertext for the same plaintext.

イロト イポト イラト イラト

Ciphertext refresh

- Refreshed ciphertext:
 - If the degree of the decryption polynomial $D(\cdot, \cdot)$ is small enough, the resulting noise in the new ciphertext can be smaller than in the original ciphertext.

∃ ► < ∃ ►</p>

Fully homomorphic encryption

- Fully homomorphic encryption
 - Using this "ciphertext refresh" procedure, the number of homomorphic operations becomes unlimited
 - We get a fully homomorphic encryption scheme.

Bootstrapping LWE ciphertexts

- Building the decryption circuit
 - Takes as input the bits of the ciphertext, and the bits of the secret-key.
 - Outputs the decrypted message $m \in \{0,1\}$

- Easier to switch to encryption modulo 2^k , instead of q
 - We perform a modulus switching to modulo 2^k using previous technique.

Building the decryption circuit

- First step: modulus switching to modulo 2^k
 - Let $\mathbf{c} \in \mathbb{Z}_q^n$ such that

$$\langle \mathbf{c}, \mathbf{s}
angle = e + m \cdot (q+1)/2 \pmod{q}$$

• From the previous modulus switching technique, we get

$$\langle \mathbf{c}', \mathbf{s} \rangle = 2^{k-1} \cdot m + e' \pmod{2^k}$$

- where $|e'| \le e \cdot 2^k/q + 1 + n/2$.
- For correct decryption, we should have $|e'| \leq 2^{k-2}$.
- Therefore we can take $k = \mathcal{O}(\log n)$.
- Second step: write the decryption circuit
 - Using only Xor and And gates
 - Starting from addition of two integers modulo 2^k.

Building the decryption circuit (2)

• We now have a ciphertext $\mathbf{c} \in \mathbb{Z}_{2^k}^n$ such that:

$$\langle \mathbf{c}, \mathbf{s}
angle = \sum_{i=1}^{n} c_i \cdot s_i = 2^{k-1} \cdot m + e \pmod{2^k}$$

• We want to write this operation with Xor and And gates only.

- 3 operations to compute with Xor and And gates:
 - Computing $c_i \cdot s_i$ with $c_i \in \mathbb{Z}_{2^k}$ and $s_i \in \{0, 1\}$
 - We compute a And between each the k bits of c_i and s_i .
 - Computing a + b from $a, b \in \mathbb{Z}_{2^k}$
 - We use schoolbook addition, propagating the carry.
 - Extracting $m \in \{0,1\}$ from $a = 2^{k-1} \cdot m + e$ with $|e| < 2^{k-2}$.
 - *m* is the xor of the most significant and second most significant bit of *a*

伺下 イヨト イヨト

Bootstrapping achieved

- Bootstrapping
 - We perform the same operations as above, but homomorphically
 - Using an encryption of the secret-key bits

- Refreshed ciphertext \mathbf{c}'
 - The noise of **c**' only depends on the depth of the decryption circuit, not on the initial noise of **c**.

< ロ > < 同 > < 三 > < 三 >

Third generation of FHE: ciphertext matrices

Homomorphic encryption with matrices [GSW13]

- Ciphertexts are square matrices instead of vectors
- Homomorphism: $\delta(C, \mathbf{v}) = \mu$ where μ is eigenvalue for secret eigenvector v
- Homomorphically add and multiply ciphertext using (roughly) matrix addition and multiplication

- One must add some noise, otherwise
 - $C \cdot \mathbf{v} = \mu \cdot \mathbf{v} + \mathbf{e} \pmod{q}$
 - for message $\mu \in \mathbb{Z}$, for some small
 - Security based on LWE problem.

・ 同 ト ・ ヨ ト ・ ヨ ト

Third generation of FHE: ciphertext matrices

• Homomorphic encryption with matrices [GSW13]

- Ciphertexts are square matrices instead of vectors
- Homomorphism: $\delta(C, \mathbf{v}) = \mu$ where μ is eigenvalue for secret eigenvector \mathbf{v}
- Homomorphically add and multiply ciphertext using (roughly) matrix addition and multiplication

- One must add some noise, otherwise broken by linear algebra
 - $C \cdot \mathbf{v} = \mu \cdot \mathbf{v} + \mathbf{e} \pmod{q}$
 - for message $\mu \in \mathbb{Z}$, for some small noise **e**.
 - Security based on LWE problem.

Ciphertext matrices: slow noise growth

- Noise grow of ciphertext multiplication [GSW13]:
 - $C_1 \cdot \mathbf{v} = \mu_1 \cdot \mathbf{v} + \mathbf{e}_1 \pmod{q}$, $C_2 \cdot \mathbf{v} = \mu_2 \cdot \mathbf{v} + \mathbf{e}_2 \pmod{q}$
 - $(C_1 \cdot C_2) \cdot \mathbf{v} = C_1 \cdot (\mu_2 \cdot \mathbf{v} + \mathbf{e}_2) = (\mu_2 \cdot \mu_1) \cdot \mathbf{v} + \mathbf{e}_3$
 - with $\mathbf{e}_3 = \mu_2 \cdot \mathbf{e}_1 + \mathcal{C}_1 \cdot \mathbf{e}_2$
- Slow noise growth:
 - Ensure $\mu_i \in \{0,1\}$, using only NAND gates $\mu_3 = 1 \mu_1 \cdot \mu_2$
 - Ciphertext flattening: ensure $C_i \in \{0, 1\}^{N \times N}$, using binary decomposition and $\mathbf{v} = (s_1, \dots, 2^{\ell}s_1, \dots, s_n, \dots, 2^{\ell}s_n)$.
 - If $\|\mathbf{e}_1\|_{\infty} \leq B$ and $\|\mathbf{e}_2\|_{\infty} \leq B$, $\|\mathbf{e}_3\|_{\infty} \leq (N+1) \cdot B$
- Leveled FHE
 - At depth L, $\|\mathbf{e}\|_{\infty} \leq (N+1)^L \cdot B$
 - One can take $q > 8 \cdot B \cdot (N+1)^L$ and accommodate polynomial depth *L*.

Ciphertext matrices: slow noise growth

- Noise grow of ciphertext multiplication [GSW13]:
 - $C_1 \cdot \mathbf{v} = \mu_1 \cdot \mathbf{v} + \mathbf{e}_1 \pmod{q}$, $C_2 \cdot \mathbf{v} = \mu_2 \cdot \mathbf{v} + \mathbf{e}_2 \pmod{q}$
 - $(C_1 \cdot C_2) \cdot \mathbf{v} = C_1 \cdot (\mu_2 \cdot \mathbf{v} + \mathbf{e}_2) = (\mu_2 \cdot \mu_1) \cdot \mathbf{v} + \mathbf{e}_3$
 - with $\mathbf{e}_3 = \mu_2 \cdot \mathbf{e}_1 + \mathcal{C}_1 \cdot \mathbf{e}_2$
- Slow noise growth:
 - Ensure $\mu_i \in \{0,1\}$, using only NAND gates $\mu_3 = 1 \mu_1 \cdot \mu_2$
 - Ciphertext flattening: ensure $C_i \in \{0,1\}^{N \times N}$, using binary decomposition and $\mathbf{v} = (s_1, \dots, 2^{\ell} s_1, \dots, s_n, \dots, 2^{\ell} s_n)$.
 - If $\|\mathbf{e}_1\|_{\infty} \leq B$ and $\|\mathbf{e}_2\|_{\infty} \leq B$, $\|\mathbf{e}_3\|_{\infty} \leq (N+1) \cdot B$
- Leveled FHE
 - At depth L, $\|\mathbf{e}\|_{\infty} \leq (N+1)^L \cdot B$
 - One can take q > 8 · B · (N + 1)^L and accommodate polynomial depth L.

周 ト イ ヨ ト イ ヨ ト

Ciphertext matrices: slow noise growth

- Noise grow of ciphertext multiplication [GSW13]:
 - $C_1 \cdot \mathbf{v} = \mu_1 \cdot \mathbf{v} + \mathbf{e}_1 \pmod{q}$, $C_2 \cdot \mathbf{v} = \mu_2 \cdot \mathbf{v} + \mathbf{e}_2 \pmod{q}$
 - $(C_1 \cdot C_2) \cdot \mathbf{v} = C_1 \cdot (\mu_2 \cdot \mathbf{v} + \mathbf{e}_2) = (\mu_2 \cdot \mu_1) \cdot \mathbf{v} + \mathbf{e}_3$
 - with $\mathbf{e}_3 = \mu_2 \cdot \mathbf{e}_1 + \mathcal{C}_1 \cdot \mathbf{e}_2$
- Slow noise growth:
 - Ensure $\mu_i \in \{0,1\}$, using only NAND gates $\mu_3 = 1 \mu_1 \cdot \mu_2$
 - Ciphertext flattening: ensure $C_i \in \{0, 1\}^{N \times N}$, using binary decomposition and $\mathbf{v} = (s_1, \dots, 2^{\ell} s_1, \dots, s_n, \dots, 2^{\ell} s_n)$.
 - If $\|\mathbf{e}_1\|_{\infty} \leq B$ and $\|\mathbf{e}_2\|_{\infty} \leq B$, $\|\mathbf{e}_3\|_{\infty} \leq (N+1) \cdot B$
- Leveled FHE
 - At depth L, $\|\mathbf{e}\|_{\infty} \leq (N+1)^{L} \cdot B$
 - One can take $q > 8 \cdot B \cdot (N+1)^L$ and accommodate polynomial depth *L*.

• • = • • = •

Fourth generation: homomorphic encryption for approximate numbers

- Homomorphic encryption for real numbers [CKKS17]
 - Floating point arithmetic, instead of exact arithmetic.
 - Starting point: Regev's scheme.
 - Homomorphism: $\delta:\mathbb{Z}_q[\mathbf{x}] \to \mathbb{Z}_q$ given by evaluation at \mathbf{s}

• One must add some noise, otherwise broken by linear algebra.

- $f(\mathbf{s}) = m + e \mod q$, for small $e \in \mathbb{Z}_q$
- Noise only affects the low-order bits of m: approximate computation, as in floating point arithmetic.
- Application: neural networks.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fourth generation: homomorphic encryption for approximate numbers

- Homomorphic encryption for real numbers [CKKS17]
 - Floating point arithmetic, instead of exact arithmetic.
 - Starting point: Regev's scheme.
 - Homomorphism: $\delta:\mathbb{Z}_q[\mathbf{x}] \to \mathbb{Z}_q$ given by evaluation at \mathbf{s}

• One must add some noise, otherwise broken by linear algebra.

- $f(\mathbf{s}) = m + e \mod q$, for small $e \in \mathbb{Z}_q$
- Noise only affects the low-order bits of m: approximate computation, as in floating point arithmetic.
- Application: neural networks.

[CKKS17]: ciphertext multiplication and rescaling

• Ciphertext multiplication $c(\mathbf{x}) = c_1(\mathbf{x}) \cdot c_2(\mathbf{x})$

•
$$c(\mathbf{s}) = (m_1 + e_1) \cdot (m_2 + e_2) = m_1 m_2 + e^* \pmod{q}$$

- with $e^* = m_1 e_2 + e_1 m_2 + e_1 e_2$.
- Rescaling of ciphertext:

•
$$c'(\mathbf{x}) = \lfloor \mathbf{c}(x)/p \rfloor \pmod{q/p}$$

- Valid encryption of $\lfloor m/p \rceil$ with noise $\simeq e/p$
- Similar to modulus switching

- Main challenge: make FHE pratical !
 - New primitives
 - Libraries (HElib)
 - Compiler to homomorphic evaluation
- Applications
 - Homomorphic machine learning: evaluate a neural network without revealing the weights.
 - Genome-wide association studies: linear regression, logistic regression.

• • = • • = •

- BGV11 Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. Fully Homomorphic Encryption without Bootstrapping. Electron. Colloquium Comput. Complex. 18: 111 (2011)
- CKKS17 Jung Hee Cheon, Andrey Kim, Miran Kim, Yong Soo Song. Homomorphic Encryption for Arithmetic of Approximate Numbers. ASIACRYPT (1) 2017: 409-437
 - GSW13 Craig Gentry, Amit Sahai, Brent Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. CRYPTO (1) 2013: 75-92
 - Gen09 Craig Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009: 169-178
 - R05 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005: 84-93

・ 同 ト ・ ヨ ト ・ ヨ ト