Basic number theory for cryptography

Jean-Sébastien Coron
Université du Luxembourg

The following exercises can be implemented in C, in Python, or using the Sage library, available at http://www.sagemath.org/. Please provide a single file. Each function should be properly tested in the file.

1 Euclid's Algorithm

Implement a function taking as input 2 integers and outputting their gcd, using Euclid's algorithm.

```
>>> gcd(12,15)
```

3

2 Multiplicative inverse

Write a function taking as input deux integers a and n, and outputting the multiplicative inverse of a modulo n if it exists, using Euclid's extended algorithm.

```
>>> modinverse(5,7)
3
```


3 Chinese Remainder

Write a function taking as input $a_{1}, n_{1}, a_{2}, n_{2}$ with $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, and returning z such that $z \equiv a_{1}\left(\bmod n_{1}\right)$ and $z \equiv a_{2}\left(\bmod n_{2}\right)$.
>>> $\operatorname{crt}(4,5,3,7)$
24
Find a formula to generalize the CRT to more than two moduli. Write a function taking as input two lists $\left[a_{1}, \ldots, a_{k}\right]$ and $\left[n_{1}, \ldots, n_{k}\right]$ and returning z such that $z \equiv a_{i}\left(\bmod n_{i}\right)$ for all $1 \leq i \leq k$.
>>> crtlist([1,2,3], [5, 7, 11])
366

4 Jacobi symbol

Write a function computing the Jacobi symbol:

5 Square roots and quadratic equations

Write a function computing square roots modulo a prime $p \equiv 3(\bmod 4)$.
>>> sqroot $(7,19)$
$[8,11]$
Write a function finding the roots of a quadratic equation $a x^{2}+b x+c=0(\bmod p)$ for $p \equiv 3(\bmod 4)$.
>>> solvequad $(2,4,8,19)$
[3,14]

