
TP 3: the RSA algorithm

Jean-Sébastien Coron

Université du Luxembourg

1 RSA with artificially small parameters

The goal is to implement the RSA algorithm, but only with artificially small
parameters for simplicity.

For key-generation, define a function:

void keygen(int *p,int *q, int *e, int *d,int length)

that generates two random primes p and q of size length bit (in this imple-
mentation, one can take length=30), and that also generates the pair (e, d). A
random prime is generated by repeatedly generating a random integer and then
testing for primality, by trial division.

Implement the function:

int RSAencrypt(int m,int e,int n)

that takes as input a message m, a public exponent e and a RSA modu-
lus n and outputs the corresponding ciphertext c. Use the square-and-multiply
algorithm.

Similarly, implement the function:

int RSAdecrypt(int c,int d,int n)

that decrypts a ciphertext c.
Check that decryption works.
In practice, RSA must be used with must larger parameters, typically the

RSA modulus must be at least 1024 bits long. One must then use an efficient
algorithm for prime number generation.

2 Fermat test

Implement the Fermat test of primality with small integers.


