Attacks against RSA signatures

Jean-Sébastien Coron

Université du Luxembourg

1 Fault attacks against RSA signatures

1. Implement the signature generation algorithm using the Chinese Remainder Theorem (CRT) using the Sage library. More precisely, to compute $s=m^d \mod N$, compute

$$s_p = s \mod p = m^{d \mod p - 1} \mod p$$

and

$$s_q = s \mod q = m^{d \mod q - 1} \mod q$$

Recover $s \mod N$ from s_p and s_q using the CRT.

- 2. Assume that an error occurs during the computation of s_p , that is, an incorrect value $s'_p \neq s_p$ is computed while s_q is correctly computed. Explain and implement how to recover the factorization of N from s, following the Bellcore attack [BDL97].
- 3. How could such error be detected? Propose and implement a simple method to detect such error.

2 Optional: the Desmedt-Odlyzko attack

Implement the Desmedt-Odlyzko attack [DO85] described in the lecture, with the RSA signature scheme $\sigma = H(m)^d \mod N$. The attack computes a forged signature as a multiplicative combination of existing signatures.

For simplicity the hash function can be computed as follows:

```
import hashlib

def sha1(s,digestsize=50):
    m = hashlib.sha1()
    m.update(s)
    return Integer(m.hexdigest(),base=16) % 2^digestsize
```

To detect smooth numbers among $H(m_i)$, one can use the factor() function from Sage. Given a $(\ell + 1) \times \ell$ matrix M of exponent vectors modulo e, one can obtain a vector from the kernel of M using:

```
v=Matrix(GF(3),M).left_kernel().matrix()[0]
```

assuming that we work with public exponent e = 3. Using such vector \mathbf{v} one can then express one row of \mathbf{M} as a linear combination of the others. This enables to express one $H(m_{\tau})$ as a multiplicative combination of the others. Eventually, this enables to express one signature as a multiplicative combination of the others, hence a forgery.

To test the attack, one can use small parameters, for example digestsize=50, and a number of primes $\ell=100$. It can be interesting to optimize the running time by varying ℓ for a fixed digestsize. Eventually, one can experiment the attack for increasing values of digestsize.

References

- [BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking cryptographic protocols for faults (extended abstract). In Advances in Cryptology EU-ROCRYPT '97, International Conference on the Theory and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, pages 37–51, 1997.
- [DO85] Yvo Desmedt and Andrew M. Odlyzko. A chosen text attack on the RSA cryptosystem and some discrete logarithm schemes. In *Advances in Cryptology CRYPTO '85, Santa Barbara, California, USA, August 18-22, 1985, Proceedings*, pages 516–522, 1985.