
TP: Fully Homomorphic Encryption Scheme

Jean-Sébastien Coron

Université du Luxembourg

1 DGHV Somewhat Homormorphic Encryption Scheme

Implement the basic DGHV encryption scheme [4], with encryption and decryption. You can
use the SAGE library [1]. Check that homomorphic addition and multiplication works.

2 Optional: approximate GCD problem: GCD attack and lattice
attack

The Partial Approximate Common Divisor problem consists in recovering p, given x0 = p · q0
and polynomially many xi = p · qi + ri.

1. Implement the brute force attack on the noise.
2. Implement the improved attack from [3].
3. Implement the lattice attack.
4. Compare the practical complexities of these attacks.

3 Optional: LWE encryption

In [2], the authors described a fully homomorphic encryption scheme based on the learning
with errors (LWE) assumption. In particular, they introduced a new relinearization tech-
nique for performing the ciphertext multiplication for a “somewhat homomorphic” encryption
scheme based on LWE.

3.1 Basic LWE encryption

Let q ∈ Z. Let s⃗ ∈ Z be the secret-key. For simplicity we can take s⃗ ∈ {0, 1}n. An LWE
ciphertext for a message m ∈ {0, 1} is c⃗ ∈ Fn

q such that

⟨c⃗, s⃗⟩ = 2e+m (mod q)

with s1 = 1. For the error e, we can take the binomial distribution χ with parameter κ, for
some small κ. One can let e = h(u) − h(v) where u, v ← {0, 1}κ, where h is the Hamming
weight function.

def binom(kappa=2):

return hw(ZZ.random_element(2^kappa))-hw(ZZ.random_element(2^kappa))

To encrypt, one can use a matrix A ∈ Fm×n
q of row vectors a⃗i ∈ Fn

q , such that ⟨⃗ai, s⃗⟩ = ei
for ei ← χ, for all 1 ≤ i ≤ m. This can be written A · s⃗ = e⃗ (mod q). To encrypt a message
µ ∈ {0, 1}, one generates a linear combination of the vectors a⃗i:

c⃗ = (µ, 0, . . . , 0) + 2

m∑
i=1

ui · a⃗i = (µ, 0 . . . , 0) + 2u⃗ ·A (mod q)

where u⃗← χm. For decryption, we compute:

⟨c⃗, s⃗⟩ = µ+ 2u⃗ ·A · s⃗ = µ+ 2⟨u⃗, e⃗⟩ (mod q)

For correct decryption, we must have |⟨u⃗, e⃗⟩| < q/4. We can fix the parameters so that this is
the case, except with negligible probability. For a constant κ, the distribution of ⟨u⃗, e⃗⟩ looks
like a Gaussian with standard deviation O(

√
n). Hence we can take q = O(

√
n). We can take

m = O(n), for a proof of security based on the leftover hash lemma.

3.2 Ciphertext multiplication and relinearization

Let c⃗1 and c⃗2 be two LWE ciphertexts, with ⟨c⃗1, s⃗⟩ = 2e1+m1 (mod q) and ⟨c⃗2, s⃗⟩ = 2e2+m2

(mod q). We can write:

⟨c⃗1, s⃗⟩ · ⟨c⃗2, s⃗⟩ =

(
n∑

i=1

c1,isi

)(
n∑

i=1

c2,isi

)
= (2e1 +m1) · (2e2 +m2) (mod q)

which gives:
n∑

i=1

n∑
j=1

c1,ic2,j · sisj = 2e+m1m2 (mod q)

for e = 2e1e2 +m1e2 +m2e1. Hence c⃗ ′ = (c1,i · c2,j)i,j ∈ Fn2

q is a new LWE ciphertext for the

secret-key s⃗
′
= (si · sj)i,j ∈ Zn2

, with

⟨c⃗ ′, s⃗
′
⟩ = 2e+m1m2 (mod q)

We would like to obtain a ciphertext with binary components only, so we define the function:

BitDecomp(u⃗) = (. . . , uij , . . .)

that computes the binary decomposition of each component ui =
∑nq−1

j=0 2juij , with nq =
⌈log2 q⌉. Similarly we define the function PowerOf2 with:

PowerOf2(v⃗) = (. . . , vi, 2vi, . . . , 2
nq−1vi, . . .)

and we have for any u⃗, v⃗:

⟨u⃗, v⃗⟩ = ⟨BitDecomp(u⃗),PowerOf2(v⃗)⟩

Therefore we can define a new ciphertext c⃗
′′
= BitDecomp(c⃗

′
) ∈ {0, 1}n2·nq which satisfies:

⟨c⃗ ′′, s⃗
′′
⟩ = 2e+m1m2 (mod q)

for the new secret-key s⃗
′′
= PowerOf2(s⃗

′
).

To get back a ciphertext in Fn
q , we compute an encryption of each component of the

secret-key s⃗
′′
. We define the LWE ciphertexts t⃗i for 1 ≤ i ≤ n2 ·nq such that ⟨⃗ti, s⃗⟩ = 2fi+s′′i

(mod q). We can then define the new relinearized ciphertext:

d⃗ =

n2·nq∑
i=1

c′′i · t⃗i

and we get:

⟨d⃗, s⃗⟩ = 2

n2·nq∑
i=1

c′′i fi + 2e+m1m2

and therefore d⃗ is an LWE encryption of m1m2.

2

3.3 Instructions

You are asked to implement a cryptographic construction, the “somewhat homomorphic”
BV11 scheme, in Python using the Sage library. Only an elementary version is required,
working for small parameters only. The goal is to show that you have a basic understanding
of the corresponding algorithms. Please keep your code readable and reasonably short (roughly
100-150 lines of code). More precisely, you must:

1. Write a short (3-4 pages) report explaining why the scheme works, based on the succinct
description above. For clarity, you can embed some snippets of your code in the report.

2. Write an implementation in Sage of the scheme, including the key generation, public-
key encryption, decryption, test of correct decryption, homomorphic multiplication with
relinearization, and test of correct homomorphic multiplication.

References

1. Sage Mathematical Library, Available at http://www.sagemath.org/
2. Zvika Brakerski, Vinod Vaikuntanathan: Efficient Fully Homomorphic Encryption from (Stan-

dard) LWE. FOCS 2011: 97-106
3. Yuanmi Chen, Phong Q. Nguyen: Faster Algorithms for Approximate Common Divisors: Break-

ing Fully-Homomorphic-Encryption Challenges over the Integers. EUROCRYPT 2012: 502-519
4. Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan: Fully Homomorphic En-

cryption over the Integers. EUROCRYPT 2010: 24-43.

3

